
Content Security Policy Level 3

https://www.w3.org/TR/2018/WD-CSP3-20181015/

https://www.w3.org/TR/CSP3/

https://w3c.github.io/webappsec-csp/

https://www.w3.org/TR/2016/WD-CSP3-20160913/

https://github.com/w3c/webappsec-csp/commits/master/index.src.html

public-webappsec@w3.org with subject line “[CSP3] … message topic …” (archives)

Mike West (Google Inc.)

File an issue (open issues)

web-platform-tests content-security-policy/ (ongoing work)

Copyright © 2018 W3C® (MIT, ERCIM, Keio, Beihang࠹࠸࠷࠶). W3C liability, trademark and document use rules apply.

This document defines a mechanism by which web developers can control the resources which a

particular page can fetch or execute, as well as a number of security-relevant policy decisions.

This section describes the status of this document at the time of its publication. Other documents may

supersede this document. A list of current W3C publications and the latest revision of this technical

W3C Working Draft, 15 October 2018

This version:

Latest published version:

Editor's Draft:

Previous Versions:

Version History:

Feedback:

Editor:

Participate:

Tests:

Abstract

Status of this document

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

1 of 113 16/01/2021, 17:19

report can be found in the W3C technical reports index at https://www.w3.org/TR/.

This document was published by the Web Application Security Working Group as a Working Draft.

This document is intended to become a W3C Recommendation.

The (archived) public mailing list public-webappsec@w3.org (see instructions) is preferred for

discussion of this specification. When sending e-mail, please put the text “CSP3” in the subject,

preferably like this: “[CSP3] …summary of comment…”

Publication as a Working Draft does not imply endorsement by the W3C Membership. This is a draft

document and may be updated, replaced or obsoleted by other documents at any time. It is

inappropriate to cite this document as other than work in progress.

This document was produced by the Web Application Security Working Group.

This document was produced by a group operating under the W3C Patent Policy. W3C maintains a

public list of any patent disclosures made in connection with the deliverables of the group; that page

also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent

which the individual believes contains Essential Claim(s) must disclose the information in accordance

with section 6 of the W3C Patent Policy.

This document is governed by the 1 February 2018 W3C Process Document.

The following features are at-risk, and may be dropped during the CR period:

“At-risk” is a W3C Process term-of-art, and does not necessarily imply that the feature is in danger of

being dropped or delayed. It means that the WG believes the feature may have difficulty being

interoperably implemented in a timely manner, and marking it as such allows the WG to drop the

feature if necessary when transitioning to the Proposed Rec stage, without having to publish a new

Candidate Rec without the feature first.

Table of Contents

The §6.6.3.1 Is element nonceable? algorithm.

1 Introduction

1.1 Examples

1.1.1 Control Execution

1.2 Goals

1.3 Changes from Level 2

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

2 of 113 16/01/2021, 17:19

2 Framework

2.1 Infrastructure

2.2 Policies

2.2.1 Parse a serialized CSP

2.2.2 Parse a serialized CSP list

2.3 Directives

2.3.1 Source Lists

2.4 Violations

2.4.1 Create a violation object for global, policy, and directive

2.4.2 Create a violation object for request, and policy.

3 Policy Delivery

3.1 The Content-Security-Policy HTTP Response Header Field

3.2 The Content-Security-Policy-Report-Only HTTP Response Header Field

3.3 The <meta> element

4 Integrations

4.1 Integration with Fetch

4.1.1 Set response’s CSP list

4.1.2 Report Content Security Policy violations for request

4.1.3 Should request be blocked by Content Security Policy?

4.1.4 Should response to request be blocked by Content Security Policy?

4.2 Integration with HTML

4.2.1 Initialize a Document's CSP list

4.2.2 Initialize a global object’s CSP list

4.2.3 Retrieve the CSP list of an object

4.2.4 Should element’s inline type behavior be blocked by Content Security Policy?

4.2.5 Should navigation request of type from source in target be blocked by Content Security
Policy?

4.2.6 Should navigation response to navigation request of type from source in target be blocked
by Content Security Policy?

4.3 Integration with ECMAScript

4.3.1 EnsureCSPDoesNotBlockStringCompilation(callerRealm, calleeRealm, source)

5 Reporting

5.1 Violation DOM Events

5.2 Obtain the deprecated serialization of violation

5.3 Report a violation

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

3 of 113 16/01/2021, 17:19

6 Content Security Policy Directives

6.1 Fetch Directives

6.1.1 child-src

6.1.1.1 child-src Pre-request check

6.1.1.2 child-src Post-request check

6.1.2 connect-src

6.1.2.1 connect-src Pre-request check

6.1.2.2 connect-src Post-request check

6.1.3 default-src

6.1.3.1 default-src Pre-request check

6.1.3.2 default-src Post-request check

6.1.3.3 default-src Inline Check

6.1.4 font-src

6.1.4.1 font-src Pre-request check

6.1.4.2 font-src Post-request check

6.1.5 frame-src

6.1.5.1 frame-src Pre-request check

6.1.5.2 frame-src Post-request check

6.1.6 img-src

6.1.6.1 img-src Pre-request check

6.1.6.2 img-src Post-request check

6.1.7 manifest-src

6.1.7.1 manifest-src Pre-request check

6.1.7.2 manifest-src Post-request check

6.1.8 media-src

6.1.8.1 media-src Pre-request check

6.1.8.2 media-src Post-request check

6.1.9 prefetch-src

6.1.9.1 prefetch-src Pre-request check

6.1.9.2 prefetch-src Post-request check

6.1.10 object-src

6.1.10.1 object-src Pre-request check

6.1.10.2 object-src Post-request check

6.1.11 script-src

6.1.11.1 script-src Pre-request check

6.1.11.2 script-src Post-request check

6.1.11.3 script-src Inline Check

6.1.12 script-src-elem

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

4 of 113 16/01/2021, 17:19

6.1.12.1 script-src-elem Pre-request check

6.1.12.2 script-src-elem Post-request check

6.1.12.3 script-src-elem Inline Check

6.1.13 script-src-attr

6.1.13.1 script-src-attr Inline Check

6.1.14 style-src

6.1.14.1 style-src Pre-request Check

6.1.14.2 style-src Post-request Check

6.1.14.3 style-src Inline Check

6.1.15 style-src-elem

6.1.15.1 style-src-elem Pre-request Check

6.1.15.2 style-src-elem Post-request Check

6.1.15.3 style-src-elem Inline Check

6.1.16 style-src-attr

6.1.16.1 style-src-attr Inline Check

6.1.17 worker-src

6.1.17.1 worker-src Pre-request Check

6.1.17.2 worker-src Post-request Check

6.2 Document Directives

6.2.1 base-uri

6.2.1.1 Is base allowed for document?

6.2.2 plugin-types

6.2.2.1 plugin-types Post-Request Check

6.2.2.2 Should plugin element be blocked a priori by Content Security Policy?:

6.2.3 sandbox

6.2.3.1 sandbox Response Check

6.2.3.2 sandbox Initialization

6.3 Navigation Directives

6.3.1 form-action

6.3.1.1 form-action Pre-Navigation Check

6.3.2 frame-ancestors

6.3.2.1 frame-ancestors Navigation Response Check

6.3.2.2 Relation to X-Frame-Options

6.3.3 navigate-to

6.3.3.1 navigate-to Pre-Navigation Check

6.3.3.2 navigate-to Navigation Response Check

6.4 Reporting Directives

6.4.1 report-uri

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

5 of 113 16/01/2021, 17:19

6.4.2 report-to

6.5 Directives Defined in Other Documents

6.6 Matching Algorithms

6.6.1 Script directive checks

6.6.1.1 Script directives pre-request check

6.6.1.2 Script directives post-request check

6.6.2 URL Matching

6.6.2.1 Does request violate policy?

6.6.2.2 Does nonce match source list?

6.6.2.3 Does request match source list?

6.6.2.4 Does response to request match source list?

6.6.2.5 Does url match source list in origin with redirect count?

6.6.2.6 Does url match expression in origin with redirect count?

6.6.2.7 scheme-part matching

6.6.2.8 host-part matching

6.6.2.9 port-part matching

6.6.2.10 path-part matching

6.6.3 Element Matching Algorithms

6.6.3.1 Is element nonceable?

6.6.3.2 Does a source list allow all inline behavior for type?

6.6.3.3 Does element match source list for type and source?

6.7 Directive Algorithms

6.7.1 Get the effective directive for request

6.7.2 Get the effective directive for inline checks

6.7.3 Get fetch directive fallback list

6.7.4 Should fetch directive execute

7 Security and Privacy Considerations

7.1 Nonce Reuse

7.2 Nonce Stealing

7.3 Nonce Retargeting

7.4 CSS Parsing

7.5 Violation Reports

7.6 Paths and Redirects

7.7 Secure Upgrades

7.8 CSP Inheriting to avoid bypasses

8 Authoring Considerations

8.1 The effect of multiple policies

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

6 of 113 16/01/2021, 17:19

This section is not normative.

This document defines Content Security Policy (CSP), a tool which developers can use to lock down

their applications in various ways, mitigating the risk of content injection vulnerabilities such as cross-

site scripting, and reducing the privilege with which their applications execute.

CSP is not intended as a first line of defense against content injection vulnerabilities. Instead, CSP is

8.2 Usage of "'strict-dynamic'"

8.3 Usage of "'unsafe-hashes'"

8.4 Allowing external JavaScript via hashes

9 Implementation Considerations

9.1 Vendor-specific Extensions and Addons

10 IANA Considerations

10.1 Directive Registry

10.2 Headers

10.2.1 Content-Security-Policy

10.2.2 Content-Security-Policy-Report-Only

11 Acknowledgements

Conformance

Document conventions

Conformant Algorithms

Index

Terms defined by this specification

Terms defined by reference

References

Normative References

Informative References

IDL Index

Issues Index

1. Introduction

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

7 of 113 16/01/2021, 17:19

best used as defense-in-depth. It reduces the harm that a malicious injection can cause, but it is not a

replacement for careful input validation and output encoding.

This document is an iteration on Content Security Policy Level 2, with the goal of more clearly

explaining the interactions between CSP, HTML, and Fetch on the one hand, and providing clear

hooks for modular extensibility on the other. Ideally, this will form a stable core upon which we can

build new functionality.

Content Security Policy aims to do to a few related things:

1.1. Examples

1.1.1. Control Execution

EXAMPLE 1

MegaCorp Inc’s developers want to protect themselves against cross-site scripting attacks. They

can mitigate the risk of script injection by ensuring that their trusted CDN is the only origin from

which script can load and execute. Moreover, they wish to ensure that no plugins can execute in

their pages' contexts. The following policy has that effect:

Content-Security-Policy: script-src https://cdn.example.com/scripts/; object-src 'none'

1.2. Goals

1. Mitigate the risk of content-injection attacks by giving developers fairly granular control over

The resources which can be requested (and subsequently embedded or executed) on behalf

of a specific Document or Worker

The execution of inline script

Dynamic code execution (via eval() and similar constructs)

The application of inline style

2. Mitigate the risk of attacks which require a resource to be embedded in a malicious context (the

"Pixel Perfect" attack described in [TIMING], for example) by giving developers granular control

over the origins which can embed a given resource.

3. Provide a policy framework which allows developers to reduce the privilege of their applications.

4. Provide a reporting mechanism which allows developers to detect flaws being exploited in the

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

8 of 113 16/01/2021, 17:19

This document describes an evolution of the Content Security Policy Level 2 specification [CSP2].

The following is a high-level overview of the changes:

wild.

1.3. Changes from Level 2

1. The specification has been rewritten from the ground up in terms of the [FETCH] specification,

which should make it simpler to integrate CSP’s requirements and restrictions with other

specifications (and with Service Workers in particular).

2. The child-src model has been substantially altered:

1. The frame-src directive, which was deprecated in CSP Level 2, has been undeprecated, but

continues to defer to child-src if not present (which defers to default-src in turn).

2. A worker-src directive has been added, deferring to child-src if not present (which

likewise defers to script-src and eventually default-src).

3. Dedicated workers now always inherit their creator’s policy.

3. The URL matching algorithm now treats insecure schemes and ports as matching their secure

variants. That is, the source expression http://example.com:80 will match both

http://example.com:80 and https://example.com:443.

Likewise, 'self' now matches https: and wss: variants of the page’s origin, even on pages

whose scheme is http.

4. Violation reports generated from inline script or style will now report "inline" as the blocked

resource. Likewise, blocked eval() execution will report "eval" as the blocked resource.

5. The manifest-src directive has been added.

6. The report-uri directive is deprecated in favor of the new report-to directive, which relies on

[REPORTING] as infrastructure.

7. The 'strict-dynamic' source expression will now allow script which executes on a page to

load more script via non-"parser-inserted" <script> elements. Details are in §8.2 Usage of

"'strict-dynamic'".

8. The 'unsafe-hashes' source expression will now allow event handlers, style attributes and

javascript: navigation targets to match hashes. Details in §8.3 Usage of "'unsafe-hashes'".

9. The source expression matching has been changed to require explicit presence of any non-

network scheme, rather than local scheme, unless that non-network scheme is the same as the

scheme of protected resource, as described in §6.6.2.6 Does url match expression in origin with

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

9 of 113 16/01/2021, 17:19

This document uses ABNF grammar to specify syntax, as defined in [RFC5234]. It also relies on the

#rule ABNF extension defined in Section 7 of [RFC7230], with the modification that OWS is

replaced with optional-ascii-whitespace. That is, the #rule used in this document is defined as:

1#element => element *(optional-ascii-whitespace "," optional-ascii-whitespace element)

and for n >= 1 and m > 1:

<n>#<m>element => element <n-1>*<m-1>(optional-ascii-whitespace "," optional-ascii-whitespace

This document depends on the Infra Standard for a number of foundational concepts used in its

algorithms and prose [INFRA].

The following definitions are used to improve readability of other definitions in this document.

optional-ascii-whitespace = *(%x09 / %x0A / %x0C / %x0D / %x20)

required-ascii-whitespace = 1*(%x09 / %x0A / %x0C / %x0D / %x20)

; These productions match the definition of ASCII whitespace from the INFRA standard.

A policy defines allowed and restricted behaviors, and may be applied to a Document,

WorkerGlobalScope, or WorkletGlobalScope as described in §4.2.2 Initialize a global object’s

CSP list and in §4.2.1 Initialize a Document's CSP list.

Each policy has an associated directive set, which is an ordered set of directives that define the

redirect count?.

10. Hash-based source expressions may now match external scripts if the <script> element that

triggers the request specifies a set of integrity metadata which is listed in the current policy.

Details in §8.4 Allowing external JavaScript via hashes.

11. The navigate-to directive gives a resource control over the endpoints to which it can initiate

navigation.

12. Reports generated for inline violations will contain a sample attribute if the relevant directive

contains the 'report-sample' expression.

2. Framework

2.1. Infrastructure

2.2. Policies

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

10 of 113 16/01/2021, 17:19

policy’s implications when applied.

Each policy has an associated disposition, which is either "enforce" or "report".

Each policy has an associated source, which is either "header" or "meta".

Multiple policies can be applied to a single resource, and are collected into a list of policies known as

a CSP list.

A CSP list contains a header-delivered Content Security Policy if it contains a policy whose source is

"header".

A serialized CSP is an ASCII string consisting of a semicolon-delimited series of serialized directives,

adhering to the following ABNF grammar [RFC5234]:

serialized-policy =

serialized-directive *(optional-ascii-whitespace ";" [optional-ascii-whitespace

A serialized CSP list is an ASCII string consisting of a comma-delimited series of serialized CSPs,

adhering to the following ABNF grammar [RFC5234]:

serialized-policy-list = 1#serialized-policy

 ; The '#' rule is the one defined in section 7 of RFC 7230

 ; but it incorporates the modifications specified

 ; in section 2.1 of this document.

To parse a serialized CSP, given a serialized CSP (serialized), a source (source), and a disposition

(disposition), execute the following steps.

This algorithm returns a Content Security Policy object. If serialized could not be parsed, the object’s

directive set will be empty.

2.2.1. Parse a serialized CSP

1. Let policy be a new policy with an empty directive set, a source of source, and a disposition of

disposition.

2. For each token returned by strictly splitting serialized on the U+003B SEMICOLON character

(;):

1. Strip leading and trailing ASCII whitespace from token.

2. If token is an empty string, continue.

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

11 of 113 16/01/2021, 17:19

To parse a serialized CSP list, given a serialized CSP list (list), a source (source), and a disposition

(disposition), execute the following steps.

This algorithm returns a list of Content Security Policy objects. If list cannot be parsed, the returned

list will be empty.

3. Let directive name be the result of collecting a sequence of code points from token which

are not ASCII whitespace.

4. Set directive name to be the result of running ASCII lowercase on directive name.

Note: Directive names are case-insensitive, that is: script-SRC 'none' and ScRiPt-

sRc 'none' are equivalent.

5. If policy’s directive set contains a directive whose name is directive name, continue.

Note: In this case, the user agent SHOULD notify developers that a duplicate directive

was ignored. A console warning might be appropriate, for example.

6. Let directive value be the result of splitting token on ASCII whitespace.

7. Let directive be a new directive whose name is directive name, and value is directive value.

8. Append directive to policy’s directive set.

3. Return policy.

2.2.2. Parse a serialized CSP list

1. Let policies be an empty list.

2. For each token returned by splitting list on commas:

1. Let policy be the result of parsing token, with a source of source, and disposition of

disposition.

2. If policy’s directive set is empty, continue.

3. Append policy to policies.

3. Return policies.

2.3. Directives

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

12 of 113 16/01/2021, 17:19

Each policy contains an ordered set of directives (its directive set), each of which controls a specific

behavior. The directives defined in this document are described in detail in §6 Content Security Policy

Directives.

Each directive is a name / value pair. The name is a non-empty string, and the value is a set of non-

empty strings. The value MAY be empty.

A serialized directive is an ASCII string, consisting of one or more whitespace-delimited tokens, and

adhering to the following ABNF [RFC5234]:

serialized-directive = directive-name [required-ascii-whitespace directive-value]

directive-name = 1*(ALPHA / DIGIT / "-")

directive-value = *(required-ascii-whitespace / (%x21-%x2B / %x2D-%x3A / %x3C-%x7E))

 ; Directive values may contain whitespace and VCHAR characters,

 ; excluding ";" and ",". The second half of the definition

 ; above represents all VCHAR characters (%x21-%x7E)

 ; without ";" and "," (%x3B and %x2C respectively)

; ALPHA, DIGIT, and VCHAR are defined in Appendix B.1 of RFC 5234.

Directives have a number of associated algorithms:

1. A pre-request check, which takes a request and a policy as an argument, and is executed during

§4.1.3 Should request be blocked by Content Security Policy?. This algorithm returns "Allowed"

unless otherwise specified.

2. A post-request check, which takes a request, a response, and a policy as arguments, and is

executed during §4.1.4 Should response to request be blocked by Content Security Policy?. This

algorithm returns "Allowed" unless otherwise specified.

3. A response check, which takes a request, a response, and a policy as arguments, and is executed

during §4.1.4 Should response to request be blocked by Content Security Policy?. This algorithm

returns "Allowed" unless otherwise specified.

4. An inline check, which takes an Element a type string, a policy, and a source string as

arguments, and is executed during §4.2.4 Should element’s inline type behavior be blocked by

Content Security Policy? and during §4.2.5 Should navigation request of type from source in

target be blocked by Content Security Policy? for javascript: requests. This algorithm returns

"Allowed" unless otherwise specified.

5. An initialization, which takes a Document or global object, a response, and a policy as

arguments. This algorithm is executed during §4.2.1 Initialize a Document's CSP list, and has no

effect unless otherwise specified.

6. A pre-navigation check, which takes a request, a navigation type string ("form-submission" or

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

13 of 113 16/01/2021, 17:19

Many directives' values consist of source lists: sets of strings which identify content that can be

fetched and potentially embedded or executed. Each string represents one of the following types of

source expression:

A serialized source list is an ASCII string, consisting of a whitespace-delimited series of source

expressions, adhering to the following ABNF grammar [RFC5234]:

serialized-source-list = (source-expression *(required-ascii-whitespace source-expression

source-expression = scheme-source / host-source / keyword-source

 / nonce-source / hash-source

; Schemes: "https:" / "custom-scheme:" / "another.custom-scheme:"

scheme-source = scheme-part ":"

; Hosts: "example.com" / "*.example.com" / "https://*.example.com:12/path/to/file.js"

"other"), two browsing contexts, and a policy as arguments, and is executed during §4.2.5

Should navigation request of type from source in target be blocked by Content Security Policy?.

It returns "Allowed" unless otherwise specified.

7. A navigation response check, which takes a request, a navigation type string ("form-

submission" or "other"), a response, two browsing contexts, a check type string ("source" or

"response"), and a policy as arguments, and is executed during §4.2.6 Should navigation

response to navigation request of type from source in target be blocked by Content Security

Policy?. It returns "Allowed" unless otherwise specified.

2.3.1. Source Lists

1. Keywords such as 'none' and 'self' (which match nothing and the current URL’s origin,

respectively)

2. Serialized URLs such as https://example.com/path/to/file.js (which matches a specific

file) or https://example.com/ (which matches everything on that origin)

3. Schemes such as https: (which matches any resource having the specified scheme)

4. Hosts such as example.com (which matches any resource on the host, regardless of scheme) or

*.example.com (which matches any resource on the host’s subdomains (and any of its

subdomains' subdomains, and so on))

5. Nonces such as 'nonce-ch4hvvbHDpv7xCSvXCs3BrNggHdTzxUA' (which can match specific

elements on a page)

6. Digests such as 'sha256-abcd...' (which can match specific elements on a page)

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

14 of 113 16/01/2021, 17:19

host-source = [scheme-part "://"] host-part [":" port-part] [path-part]

scheme-part = scheme

 ; scheme is defined in section 3.1 of RFC 3986.

host-part = "*" / ["*."] 1*host-char *("." 1*host-char)

host-char = ALPHA / DIGIT / "-"

port-part = 1*DIGIT / "*"

path-part = path-absolute (but not including ";" or ",")

 ; path-absolute is defined in section 3.3 of RFC 3986.

; Keywords:

keyword-source = "'self'" / "'unsafe-inline'" / "'unsafe-eval'"

 / "'strict-dynamic'" / "'unsafe-hashes'" /

 / "'report-sample'" / "'unsafe-allow-redirects'"

ISSUE: Bikeshed unsafe-allow-redirects.

; Nonces: 'nonce-[nonce goes here]'

nonce-source = "'nonce-" base64-value "'"

base64-value = 1*(ALPHA / DIGIT / "+" / "/" / "-" / "_")*2("=")

; Digests: 'sha256-[digest goes here]'

hash-source = "'" hash-algorithm "-" base64-value "'"

hash-algorithm = "sha256" / "sha384" / "sha512"

The host-char production intentionally contains only ASCII characters; internationalized domain

names cannot be entered directly as part of a serialized CSP, but instead MUST be Punycode-encoded

[RFC3492]. For example, the domain üüüüüü.de MUST be represented as xn--tdaaaaaa.de.

Note: Though IP address do match the grammar above, only 127.0.0.1 will actually match a

URL when used in a source expression (see §6.6.2.5 Does url match source list in origin with

redirect count? for details). The security properties of IP addresses are suspect, and authors ought

to prefer hostnames whenever possible.

Note: The base64-value grammar allows both base64 and base64url encoding. These encodings

are treated as equivalant when processing hash-source values. Nonces, however, are strict string

matches: we use the base64-value grammar to limit the characters available, and reduce the

complexity for the server-side operator (encodings, etc), but the user agent doesn’t actually care

about any underlying value, nor does it do any decoding of the nonce-source value.

2.4. Violations

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

15 of 113 16/01/2021, 17:19

A violation represents an action or resource which goes against the set of policy objects associated

with a global object.

Each violation has a global object, which is the global object whose policy has been violated.

Each violation has a url which is its global object’s URL.

Each violation has a status which is a non-negative integer representing the HTTP status code of the

resource for which the global object was instantiated.

Each violation has a resource, which is either null, "inline", "eval", or a URL. It represents the

resource which violated the policy.

Each violation has a referrer, which is either null, or a URL. It represents the referrer of the resource

whose policy was violated.

Each violation has a policy, which is the policy that has been violated.

Each violation has a disposition, which is the disposition of the policy that has been violated.

Each violation has an effective directive which is a non-empty string representing the directive whose

enforcement caused the violation.

Each violation has a source file, which is either null or a URL.

Each violation has a line number, which is a non-negative integer.

Each violation has a column number, which is a non-negative integer.

Each violation has a element, which is either null or an element.

Each violation has a sample, which is a string. It is the empty string unless otherwise specified.

Given a global object (global), a policy (policy), and a string (directive), the following algorithm

creates a new violation object, and populates it with an initial set of data:

Note: A violation’s sample will be populated with the first 40 characters of an inline script, event

handler, or style that caused an violation. Violations which stem from an external file will not

include a sample in the violation report.

2.4.1. Create a violation object for global, policy, and directive

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

16 of 113 16/01/2021, 17:19

Given a request (request), a policy (policy), the following algorithm creates a new violation object,

and populates it with an initial set of data:

1. Let violation be a new violation whose global object is global, policy is policy, effective directive

is directive, and resource is null.

2. If the user agent is currently executing script, and can extract a source file’s URL, line number,

and column number from the global, set violation’s source file, line number, and column number

accordingly.

ISSUE 1 Is this kind of thing specified anywhere? I didn’t see anything that looked useful

in [ECMA262].

Note: User agents need to ensure that the source file is the URL requested by the page, pre-

redirects. If that’s not possible, user agents need to strip the URL down to an origin to avoid

unintentional leakage.

3. If global is a Window object, set violation’s referrer to global’s document's referrer.

4. Set violation’s status to the HTTP status code for the resource associated with violation’s global

object.

ISSUE 2 How, exactly, do we get the status code? We don’t actually store it anywhere.

5. Return violation.

2.4.2. Create a violation object for request, and policy.

1. Let directive be the result of executing §6.7.1 Get the effective directive for request on request.

2. Let violation be the result of executing §2.4.1 Create a violation object for global, policy, and

directive on request’s client’s global object, policy, and directive.

3. Set violation’s resource to request’s url.

Note: We use request’s url, and not its current url, as the latter might contain information

about redirect targets to which the page MUST NOT be given access.

4. Return violation.

3. Policy Delivery

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

17 of 113 16/01/2021, 17:19

A server MAY declare a policy for a particular resource representation via an HTTP response header

field whose value is a serialized CSP. This mechanism is defined in detail in §3.1 The Content-

Security-Policy HTTP Response Header Field and §3.2 The Content-Security-Policy-Report-Only

HTTP Response Header Field, and the integration with Fetch and HTML is described in §4.1

Integration with Fetch and §4.2 Integration with HTML.

A policy may also be declared inline in an HTML document via a <meta> element’s http-equiv

attribute, as described in §3.3 The <meta> element.

The Content-Security-Policy HTTP response header field is the preferred mechanism for

delivering a policy from a server to a client. The header’s value is represented by the following ABNF

[RFC5234]:

Content-Security-Policy = 1#serialized-policy

 ; The '#' rule is the one defined in section 7 of RFC 7230

 ; but it incorporates the modifications specified

 ; in section 2.1 of this document.

A server MAY send different Content-Security-Policy header field values with different

representations of the same resource.

A server SHOULD NOT send more than one HTTP response header field named "Content-

Security-Policy" with a given resource representation.

When the user agent receives a Content-Security-Policy header field, it MUST parse and enforce

each serialized CSP it contains as described in §4.1 Integration with Fetch, §4.2 Integration with

HTML.

The Content-Security-Policy-Report-Only HTTP response header field allows web developers to

experiment with policies by monitoring (but not enforcing) their effects. The header’s value is

3.1. The Content-Security-Policy HTTP Response Header Field

EXAMPLE 2

Content-Security-Policy: script-src 'self';

 report-to csp-reporting-endpoint

3.2. The Content-Security-Policy-Report-Only HTTP Response Header Field

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

18 of 113 16/01/2021, 17:19

represented by the following ABNF [RFC5234]:

Content-Security-Policy-Report-Only = 1#serialized-policy

 ; The '#' rule is the one defined in section 7 of RFC 7230

 ; but it incorporates the modifications specified

 ; in section 2.1 of this document.

This header field allows developers to piece together their security policy in an iterative fashion,

deploying a report-only policy based on their best estimate of how their site behaves, watching for

violation reports, and then moving to an enforced policy once they’ve gained confidence in that

behavior.

A server MAY send different Content-Security-Policy-Report-Only header field values with

different representations of the same resource.

A server SHOULD NOT send more than one HTTP response header field named "Content-

Security-Policy-Report-Only" with a given resource representation.

When the user agent receives a Content-Security-Policy-Report-Only header field, it MUST

parse and monitor each serialized CSP it contains as described in §4.1 Integration with Fetch and §4.2

Integration with HTML.

A Document may deliver a policy via one or more HTML <meta> elements whose http-equiv

attributes are an ASCII case-insensitive match for the string "Content-Security-Policy". For

example:

EXAMPLE 3

Content-Security-Policy-Report-Only: script-src 'self';

 report-to csp-reporting-endpoint

Note: The Content-Security-Policy-Report-Only header is not supported inside a <meta>

element.

3.3. The <meta> element

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

19 of 113 16/01/2021, 17:19

Implementation details can be found in HTML’s Content Security Policy state http-equiv processing

instructions [HTML].

Authors are strongly encouraged to place <meta> elements as early in the document as possible,

because policies in <meta> elements are not applied to content which precedes them. In particular, note

that resources fetched or prefetched using the Link HTTP response header field, and resources fetched

or prefetched using <link> and <script> elements which precede a <meta>-delivered policy will not be

blocked.

This section is non-normative.

This document defines a set of algorithms which are used in other specifications in order to implement

the functionality. These integrations are outlined here for clarity, but those external documents are the

normative references which ought to be consulted for detailed information.

A number of directives control resource loading in one way or another. This specification provides

algorithms which allow Fetch to make decisions about whether or not a particular request should be

blocked or allowed, and about whether a particular response should be replaced with a network error.

EXAMPLE 4

<meta http-equiv="Content-Security-Policy" content="script-src 'self'">

Note: The Content-Security-Policy-Report-Only header is not supported inside a <meta>

element. Neither are the report-uri, frame-ancestors, and sandbox directives.

Note: A policy specified via a <meta> element will be enforced along with any other policies active

for the protected resource, regardless of where they’re specified. The general impact of enforcing

multiple policies is described in §8.1 The effect of multiple policies.

Note: Modifications to the content attribute of a <meta> element after the element has been parsed

will be ignored.

4. Integrations

4.1. Integration with Fetch

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

20 of 113 16/01/2021, 17:19

A policy is generally enforced upon a global object, but the user agent needs to parse any policy

delivered via an HTTP response header field before any global object is created in order to handle

directives that require knowledge of a response’s details. To that end:

Given a response (response), this algorithm evaluates its header list for serialized CSP values, and

populates its CSP list accordingly:

1. §4.1.3 Should request be blocked by Content Security Policy? is called as part of step #5 of its

Main Fetch algorithm. This allows directives' pre-request checks to be executed against each

request before it hits the network, and against each redirect that a request might go through on its

way to reaching a resource.

2. §4.1.4 Should response to request be blocked by Content Security Policy? is called as part of step

#13 of its Main Fetch algorithm. This allows directives' post-request checks and response checks

to be executed on the response delivered from the network or from a Service Worker.

1. A response has an associated CSP list which contains any policy objects delivered in the

response’s header list.

2. §4.1.1 Set response’s CSP list is called in the HTTP fetch and HTTP-network fetch algorithms.

Note: These two calls should ensure that a response’s CSP list is set, regardless of how the

response is created. If we hit the network (via HTTP-network fetch, then we parse the policy

before we handle the Set-Cookie header. If we get a response from a Service Worker (via

HTTP fetch, we’ll process its CSP list before handing the response back to our caller.

4.1.1. Set response’s CSP list

1. Set response’s CSP list to the empty list.

2. Let policies be the result of parsing the result of extracting header list values given Content-

Security-Policy and response’s header list, with a source of "header", and a disposition of

"enforce".

3. Append to policies the result of parsing the result of extracting header list values given Content-

Security-Policy-Report-Only and response’s header list, with a source of "header", and a

disposition of "report".

4. For each policy in policies:

1. Insert policy into response’s CSP list.

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

21 of 113 16/01/2021, 17:19

Given a request (request), this algorithm reports violations based on client’s "report only" policies.

Given a request (request), this algorithm returns Blocked or Allowed and reports violations based on

request’s client’s Content Security Policy.

Given a response (response) and a request (request), this algorithm returns Blocked or Allowed, and

reports violations based on request’s client’s Content Security Policy.

4.1.2. Report Content Security Policy violations for request

1. Let CSP list be request’s client’s global object’s CSP list.

2. For each policy in CSP list:

1. If policy’s disposition is "enforce", then skip to the next policy.

2. Let violates be the result of executing §6.6.2.1 Does request violate policy? on request and

policy.

3. If violates is not "Does Not Violate", then execute §5.3 Report a violation on the result of

executing §2.4.2 Create a violation object for request, and policy. on request, and policy.

4.1.3. Should request be blocked by Content Security Policy?

1. Let CSP list be request’s client’s global object’s CSP list.

2. Let result be "Allowed".

3. For each policy in CSP list:

1. If policy’s disposition is "report", then skip to the next policy.

2. Let violates be the result of executing §6.6.2.1 Does request violate policy? on request and

policy.

3. If violates is not "Does Not Violate", then:

1. Execute §5.3 Report a violation on the result of executing §2.4.2 Create a violation

object for request, and policy. on request, and policy.

2. Set result to "Blocked".

4. Return result.

4.1.4. Should response to request be blocked by Content Security Policy?

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

22 of 113 16/01/2021, 17:19

1. Let CSP list be request’s client’s global object’s CSP list.

2. Let result be "Allowed".

3. For each policy in CSP list:

1. For each directive in policy:

1. If the result of executing directive’s post-request check is "Blocked", then:

1. Execute §5.3 Report a violation on the result of executing §2.4.2 Create a

violation object for request, and policy. on request, and policy.

2. If policy’s disposition is "enforce", then set result to "Blocked".

Note: This portion of the check verifies that the page can load the response. That is, that a

Service Worker hasn’t substituted a file which would violate the page’s CSP.

4. For each policy in response’s CSP list:

1. For each directive in policy:

1. If the result of executing directive’s response check on request, response, and policy is

"Blocked", then:

1. Execute §5.3 Report a violation on the result of executing §2.4.2 Create a

violation object for request, and policy. on request, and policy.

2. If policy’s disposition is "enforce", then set result to "Blocked".

Note: This portion of the check allows policies delivered with the response to determine

whether the response is allowed to be delivered.

5. Return result.

4.2. Integration with HTML

1. The Document, WorkerGlobalScope, and WorkletGlobalScope objects have a CSP list,

which holds all the policy objects which are active for a given context. This list is empty unless

otherwise specified, and is populated via the §4.2.2 Initialize a global object’s CSP list and §4.2.1

Initialize a Document's CSP list algorithms.

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

23 of 113 16/01/2021, 17:19

ISSUE 3 This concept is missing from W3C’s Workers. <https://github.com/w3c/html

/issues/187>

2. A global object’s CSP list is the result of executing §4.2.3 Retrieve the CSP list of an object with

the global object as the object.

3. A policy is enforced or monitored for a global object by inserting it into the global object’s CSP

list.

4. §4.2.2 Initialize a global object’s CSP list is called during the run a worker algorithm in order to

bind a set of policy objects associated with a response WorkerGlobalScope or

WorkletGlobalScope.

5. §4.2.1 Initialize a Document's CSP list is called during the initializing a new Document object

algorithm in order to bind a set of policy objects associated with a response to a newly created

Document.

6. §4.2.4 Should element’s inline type behavior be blocked by Content Security Policy? is called

during the prepare a script and update a style block algorithms in order to determine whether or

not an inline script or style block is allowed to execute/render.

7. §4.2.4 Should element’s inline type behavior be blocked by Content Security Policy? is called

during handling of inline event handlers (like onclick) and inline style attributes in order to

determine whether or not they ought to be allowed to execute/render.

8. policy is enforced during processing of the <meta> element’s http-equiv.

9. A Document's embedding document is the Document through which the Document's browsing

context is nested.

10. HTML populates each request’s cryptographic nonce metadata and parser metadata with relevant

data from the elements responsible for resource loading.

ISSUE 4 Stylesheet loading is not yet integrated with Fetch in W3C’s HTML.

<https://github.com/whatwg/html/issues/198>

ISSUE 5 Stylesheet loading is not yet integrated with Fetch in WHATWG’s HTML.

<https://github.com/whatwg/html/issues/968>

11. §6.2.1.1 Is base allowed for document? is called during <base>'s set the frozen base URL

algorithm to ensure that the href attribute’s value is valid.

12. §6.2.2.2 Should plugin element be blocked a priori by Content Security Policy?: is called during

the processing of <object>, <embed>, and applet elements to determine whether they may trigger

a fetch.

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

24 of 113 16/01/2021, 17:19

Given a Document (document), and a response (response), the user agent performs the following

steps in order to initialize document’s CSP list:

Note: Fetched plugin resources are handled in §4.1.4 Should response to request be blocked

by Content Security Policy?.

ISSUE 6 This hook is missing from W3C’s HTML. <https://github.com/w3c/html

/issues/547>

13. §4.2.5 Should navigation request of type from source in target be blocked by Content Security

Policy? is called during the process a navigate fetch algorithm, and §4.2.6 Should navigation

response to navigation request of type from source in target be blocked by Content Security

Policy? is called during the process a navigate response algorithm to apply directive’s navigation

checks, as well as inline checks for navigations to javascript: URLs.

ISSUE 7 W3C’s HTML is not based on Fetch, and does not have a process a navigate

response algorithm into which to hook. <https://github.com/w3c/html/issues/548>

4.2.1. Initialize a Document's CSP list

1. If response’s url’s scheme is a local scheme:

1. Let documents be an empty list.

2. If document has an embedding document (embedding), then add embedding to documents.

3. If document has an opener browsing context, then add its active document to documents.

4. For each doc in documents:

1. For each policy in doc’s CSP list:

1. Insert a copy of policy into document’s CSP list.

Note: local scheme includes about:, and this algorithm will therefore copy the embedding

document’s policies for an iframe srcdoc Document.

Note: We do all this to ensure that a page cannot bypass its policy by embedding a frame or

popping up a new window containing content it controls (blob: resources, or

document.write()).

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

25 of 113 16/01/2021, 17:19

Given a global object (global), and a response (response), the user agent performs the following steps

in order to initialize global’s CSP list:

To obtain object’s CSP list:

2. For each policy in response’s CSP list, insert policy into document’s CSP list.

3. For each policy in document’s CSP list:

1. For each directive in policy:

1. Execute directive’s initialization algorithm on document and response.

4.2.2. Initialize a global object’s CSP list

1. If response’s url’s scheme is a local scheme, or if global is a DedicatedWorkerGlobalScope:

1. Let owners be an empty list.

2. Add each of the items in global’s owner set to owners.

3. For each owner in owners:

1. For each policy in owner’s CSP list:

1. Insert a copy of policy into global’s CSP list.

Note: local scheme includes about:, and this algorithm will therefore copy the embedding

document’s policies for an iframe srcdoc Document.

2. If global is a SharedWorkerGlobalScope or ServiceWorkerGlobalScope:

1. For each policy in response’s CSP list, insert policy into global’s CSP list.

3. If global is a WorkletGlobalScope:

1. Let owner be global’s owner document.

2. For each policy in owner’s CSP list:

1. Insert a copy of policy into global’s CSP list.

4.2.3. Retrieve the CSP list of an object

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

26 of 113 16/01/2021, 17:19

Given an Element (element), a string (type), and a string (source) this algorithm returns "Allowed" if

the element is allowed to have inline definition of a particular type of behavior (script execution, style

application, event handlers, etc.), and "Blocked" otherwise:

1. If object is a Document return object’s CSP list.

2. If object is a Window return object’s associated Document’s CSP list.

3. If object is a WorkerGlobalScope, return object’s CSP list.

4. If object is a WorkletGlobalScope, return object’s CSP list.

5. Return null.

4.2.4. Should element’s inline type behavior be blocked by Content Security Policy?

Note: The valid values for type are "script", "script attribute", "style", and "style

attribute".

1. Assert: element is not null.

2. Let result be "Allowed".

3. For each policy in element’s Document's global object’s CSP list:

1. For each directive in policy’s directive set:

1. If directive’s inline check returns "Allowed" when executed upon element, type,

policy and source, skip to the next directive.

2. Let directive-name be the result of executing §6.7.2 Get the effective directive for

inline checks on type.

3. Otherwise, let violation be the result of executing §2.4.1 Create a violation object for

global, policy, and directive on the current settings object’s global object, policy, and

directive-name.

4. Set violation’s resource to "inline".

5. Set violation’s element to element.

6. If directive’s value contains the expression "'report-sample'", then set violation’s

sample to the substring of source containing its first 40 characters.

7. Execute §5.3 Report a violation on violation.

8. If policy’s disposition is "enforce", then set result to "Blocked".

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

27 of 113 16/01/2021, 17:19

Given a request (navigation request), a string (type, either "form-submission" or "other"), and two

browsing contexts (source and target), this algorithm return "Blocked" if the active policy blocks the

navigation, and "Allowed" otherwise:

4. Return result.

4.2.5. Should navigation request of type from source in target be blocked by Content Security
Policy?

1. Let result be "Allowed".

2. For each policy in source’s active document’s CSP list:

1. For each directive in policy:

1. If directive’s pre-navigation check returns "Allowed" when executed upon

navigation request, type, source, target, and policy skip to the next directive.

2. Otherwise, let violation be the result of executing §2.4.1 Create a violation object for

global, policy, and directive on source’s relevant global object, policy, and directive’s

name.

3. Set violation’s resource to navigation request’s URL.

4. Execute §5.3 Report a violation on violation.

5. If policy’s disposition is "enforce", then set result to "Blocked".

3. If result is "Allowed", and if navigation request’s current URL’s scheme is javascript:

1. For each policy in source’s active document’s CSP List:

1. For each directive in policy:

1. If directive’s inline check returns "Allowed" when executed upon null,

"navigation" and navigation request’s current URL, skip to the next

directive.

2. Let directive-name be the result of executing §6.7.2 Get the effective directive

for inline checks on type.

3. Otherwise, let violation be the result of executing §2.4.1 Create a violation

object for global, policy, and directive on source’s relevant global object,

policy, and directive-name.

4. Set violation’s resource to navigation request’s URL.

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

28 of 113 16/01/2021, 17:19

Given a request (navigation request), a string (type, either "form-submission" or "other"), a

response navigation response, and two browsing contexts (source and target), this algorithm returns

"Blocked" if the active policy blocks the navigation, and "Allowed" otherwise:

5. Execute §5.3 Report a violation on violation.

6. If policy’s disposition is "enforce", then set result to "Blocked".

4. Return result.

4.2.6. Should navigation response to navigation request of type from source in target be blocked by
Content Security Policy?

1. Let result be "Allowed".

2. For each policy in navigation response’s CSP list:

Note: Some directives (like frame-ancestors) allow a response’s Content Security Policy to

act on the navigation.

1. For each directive in policy:

1. If directive’s navigation response check returns "Allowed" when executed upon

navigation request, type, navigation response, source, target, "response", and policy

skip to the next directive.

2. Otherwise, let violation be the result of executing §2.4.1 Create a violation object for

global, policy, and directive on null, policy, and directive’s name.

Note: We use null for the global object, as no global exists: we haven’t

processed the navigation to create a Document yet.

3. Set violation’s resource to navigation response’s URL.

4. Execute §5.3 Report a violation on violation.

5. If policy’s disposition is "enforce", then set result to "Blocked".

3. For each policy in source’s active document’s CSP List:

Note: Some directives in the source context (like navigate-to) need the response before acting

on the navigation.

1. For each directive in policy:

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

29 of 113 16/01/2021, 17:19

ECMAScript defines a HostEnsureCanCompileStrings() abstract operation which allows the

host environment to block the compilation of strings into ECMAScript code. This document defines

an implementation of that abstract operation thich examines the relevant CSP list to determine whether

such compilation ought to be blocked.

Given two realms (callerRealm and calleeRealm), and a string (source), this algorithm returns

normally if string compilation is allowed, and throws an "EvalError" if not:

1. If directive’s navigation response check returns "Allowed" when executed upon

navigation request, type, navigation response, source, target, "source", and policy

skip to the next directive.

2. Otherwise, let violation be the result of executing §2.4.1 Create a violation object for

global, policy, and directive on source’s relevant global object, policy, and directive’s

name.

3. Set violation’s resource to navigation request’s URL.

4. Execute §5.3 Report a violation on violation.

5. If policy’s disposition is "enforce", then set result to "Blocked".

4. Return result.

4.3. Integration with ECMAScript

4.3.1. EnsureCSPDoesNotBlockStringCompilation(callerRealm, calleeRealm, source)

1. Let globals be a list containing callerRealm’s global object and calleeRealm’s global object.

2. For each global in globals:

1. Let result be "Allowed".

2. For each policy in global’s CSP list:

1. Let source-list be null.

2. If policy contains a directive whose name is "script-src", then set source-list to that

directive's value.

Otherwise if policy contains a directive whose name is "default-src", then set source-

list to that directive’s value.

3. If source-list is not null, and does not contain a source expression which is an ASCII

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

30 of 113 16/01/2021, 17:19

When one or more of a policy’s directives is violated, a violation report may be generated and sent out

to a reporting endpoint associated with the policy.

enum SecurityPolicyViolationEventDisposition {

"enforce", "report"

};

[Constructor(DOMString type, optional SecurityPolicyViolationEventInit eventInitDict

Exposed=(Window,Worker)]

interface SecurityPolicyViolationEvent : Event {

readonly attribute USVString documentURI;

readonly attribute USVString referrer;

readonly attribute USVString blockedURI;

readonly attribute DOMString violatedDirective;

readonly attribute DOMString effectiveDirective;

readonly attribute DOMString originalPolicy;

readonly attribute USVString sourceFile;

case-insensitive match for the string "'unsafe-eval'", then:

1. Let violation be the result of executing §2.4.1 Create a violation object for global,

policy, and directive on global, policy, and "script-src".

2. Set violation’s resource to "inline".

3. If source-list contains the expression "'report-sample'", then set violation’s

sample to the substring of source containing its first 40 characters.

4. Execute §5.3 Report a violation on violation.

5. If policy’s disposition is "enforce", then set result to "Blocked".

3. If result is "Blocked", throw an EvalError exception.

ISSUE 8 HostEnsureCanCompileStrings() does not include the string which is going to

be compiled as a parameter. We’ll also need to update HTML to pipe that value through to CSP.

<https://github.com/tc39/ecma262/issues/938>

5. Reporting

5.1. Violation DOM Events

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

31 of 113 16/01/2021, 17:19

readonly attribute DOMString sample;

readonly attribute SecurityPolicyViolationEventDisposition disposition

readonly attribute unsigned short statusCode;

readonly attribute unsigned long lineNumber;

readonly attribute unsigned long columnNumber;

};

dictionary SecurityPolicyViolationEventInit : EventInit {

required USVString documentURI;

USVString referrer = "";

USVString blockedURI = "";

required DOMString violatedDirective;

required DOMString effectiveDirective;

required DOMString originalPolicy;

USVString sourceFile = "";

DOMString sample = "";

required SecurityPolicyViolationEventDisposition disposition;

required unsigned short statusCode;

unsigned long lineNumber = 0;

unsigned long columnNumber = 0;

};

Given a violation (violation), this algorithm returns a JSON text string representation of the violation,

suitable for submission to a reporting endpoint associated with the deprecated report-uri directive.

5.2. Obtain the deprecated serialization of violation

1. Let object be a new JavaScript object with properties initialized as follows:

The result of executing the URL serializer on violation’s url, with the exclude fragment

flag set.

The result of executing the URL serializer on violation’s referrer, with the exclude

fragment flag set.

The result of executing the URL serializer on violation’s resource, with the exclude

fragment flag set.

violation’s effective directive

"document-uri"

"referrer"

"blocked-uri"

"effective-directive"

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

32 of 113 16/01/2021, 17:19

Given a violation (violation), this algorithm reports it to the endpoint specified in violation’s policy,

and fires a SecurityPolicyViolationEvent at violation’s element, or at violation’s global object

as described below:

violation’s effective directive

The serialization of violation’s policy

The disposition of violation’s policy

violation’s status

violation’s sample

"violated-directive"

"original-policy"

"disposition"

"status-code"

"script-sample"

Note: The name script-sample was chosen for compatibility with an earlier iteration of

this feature which has shipped in Firefox since its initial implementation of CSP. Despite

the name, this field will contain samples for non-script violations, like stylesheets. The

data contained in a SecurityPolicyViolationEvent object, and in reports

generated via the new report-to directive, is named in a more encompassing fashion:

sample.

2. If violation’s source file is not null:

1. Set object’s "source-file" property to the result of executing the URL serializer on

violation’s source file, with the exclude fragment flag set.

2. Set object’s "line-number" property to violation’s line number.

3. Set object’s "column-number" property to violation’s column number.

3. Assert: If object’s "blocked-uri" property is not "inline", then its "sample" property is the

empty string.

4. Return the result of executing JSON.stringify() on object.

5.3. Report a violation

1. Let global be violation’s global object.

2. Let target be violation’s element.

3. Queue a task to run the following steps:

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

33 of 113 16/01/2021, 17:19

Note: We "queue a task" here to ensure that the event targeting and dispatch happens after

JavaScript completes execution of the task responsible for a given violation (which might

manipulate the DOM).

1. If target is not null, and global is a Window, and target’s shadow-including root is not

global’s associated Document, set target to null.

Note: This ensures that we fire events only at elements connected to violation’s policy’s

Document. If a violation is caused by an element which isn’t connected to that

document, we’ll fire the event at the document rather than the element in order to ensure

that the violation is visible to the document’s listeners.

2. If target is null:

1. Set target be violation’s global object.

2. If target is a Window, set target to target’s associated Document.

3. Fire an event named securitypolicyviolation that uses the

SecurityPolicyViolationEvent interface at target with its attributes initialized as

follows:

The result of executing the URL serializer on violation’s url, with the exclude

fragment flag set.

The result of executing the URL serializer on violation’s referrer, with the exclude

fragment flag set.

The result of executing the URL serializer on violation’s resource, with the exclude

fragment flag set.

violation’s effective directive

violation’s effective directive

The serialization of violation’s policy

violation’s disposition

documentURI

referrer

blockedURI

effectiveDirective

violatedDirective

originalPolicy

disposition

sourceFile

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

34 of 113 16/01/2021, 17:19

The result of executing the URL serializer on violation’s source file, with the exclude

fragment flag set if the violation’s source file it not null and the empty string

otherwise.

violation’s status

violation’s line number

violation’s column number

violation’s sample

true

true

statusCode

lineNumber

columnNumber

sample

bubbles

composed

Note: Both effectiveDirective and violatedDirective are the same value.

This is intentional to maintain backwards compatibility.

Note: We set the composed attribute, which means that this event can be captured on its

way into, and will bubble its way out of a shadow tree. target, et al will be

automagically scoped correctly for the main tree.

4. If violation’s policy’s directive set contains a directive named "report-uri" (directive):

1. If violation’s policy’s directive set contains a directive named "report-to", skip the

remaining substeps.

2. For each token returned by splitting a string on ASCII whitespace with directive’s value

as the input.

1. Let endpoint be the result of executing the URL parser with token as the input, and

violation’s url as the base URL.

2. If endpoint is not a valid URL, skip the remaining substeps.

3. Let request be a new request, initialized as follows:

"POST"
method

url

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

35 of 113 16/01/2021, 17:19

violation’s url

violation’s global object’s relevant settings object’s origin

"no-window"

violation’s global object’s relevant settings object

"report"

""

"same-origin"

"true"

A header list containing a single header whose name is "Content-Type", and

value is "application/csp-report"

The result of executing §5.2 Obtain the deprecated serialization of violation

on violation

"error"

origin

window

client

destination

initiator

credentials mode

keepalive flag

header list

body

redirect mode

Note: request’s mode defaults to "no-cors"; the response is ignored entirely.

4. Fetch request. The result will be ignored.

Note: All of this should be considered deprecated. It sends a single request per violation,

which simply isn’t scalable. As soon as this behavior can be removed from user agents,

it will be.

Note: report-uri only takes effect if report-to is not present. That is, the latter

overrides the former, allowing for backwards compatibility with browsers that don’t

support the new mechanism.

5. If violation’s policy’s directive set contains a directive named "report-to" (directive):

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

36 of 113 16/01/2021, 17:19

This specification defines a number of types of directives which allow developers to control certain

aspects of their sites' behavior. This document defines directives which govern resource fetching (in

§6.1 Fetch Directives), directives which govern the state of a document (in §6.2 Document

Directives), directives which govern aspects of navigation (in §6.3 Navigation Directives), and

directives which govern reporting (in §6.4 Reporting Directives). These form the core of Content

Security Policy; other directives are defined in a modular fashion in ancillary documents (see §6.5

Directives Defined in Other Documents for examples).

To mitigate the risk of cross-site scripting attacks, web developers SHOULD include directives that

regulate sources of script and plugins. They can do so by including:

In either case, developers SHOULD NOT include either 'unsafe-inline', or data: as valid sources

in their policies. Both enable XSS attacks by allowing code to be included directly in the document

itself; they are best avoided completely.

Fetch directives control the locations from which certain resource types may be loaded. For instance,

1. Let group be directive’s value.

2. Let settings object be violation’s global object’s relevant settings object.

3. Execute [REPORTING]'s Queue data as type for endpoint group on settings algorithm

with the following arguments:

violation

"CSP"

group

settings object

data

type

endpoint group

settings

6. Content Security Policy Directives

Both the script-src and object-src directives, or

a default-src directive

6.1. Fetch Directives

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

37 of 113 16/01/2021, 17:19

script-src allows developers to allow trusted sources of script to execute on a page, while font-src

controls the sources of web fonts.

The child-src directive governs the creation of nested browsing contexts (e.g. <iframe> and <frame>

navigations) and Worker execution contexts. The syntax for the directive’s name and value is

described by the following ABNF:

directive-name = "child-src"

directive-value = serialized-source-list

This directive controls requests which will populate a frame or a worker. More formally, requests

falling into one of the following categories:

This directive’s pre-request check is as follows:

Given a request (request) and a policy (policy):

6.1.1. child-src

destination is "document", and whose target browsing context is a nested browsing context (e.g.

requests which will populate an <iframe> or <frame> element)

destination is either "serviceworker", "sharedworker", or "worker" (which are fed to the run a

worker algorithm for ServiceWorker, SharedWorker, and Worker, respectively).

EXAMPLE 5

Given a page with the following Content Security Policy:

Content-Security-Policy: child-src https://example.com/

Fetches for the following code will all return network errors, as the URLs provided do not match

child-src's source list:

<iframe src="https://example.org"></iframe>

<script>

var blockedWorker = new Worker("data:application/javascript,...");

</script>

6.1.1.1. child-src Pre-request check

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

38 of 113 16/01/2021, 17:19

This directive’s post-request check is as follows:

Given a request (request), a response (response), and a policy (policy):

The connect-src directive restricts the URLs which can be loaded using script interfaces. The syntax

for the directive’s name and value is described by the following ABNF:

directive-name = "connect-src"

directive-value = serialized-source-list

This directive controls requests which transmit or receive data from other origins. This includes APIs

like fetch(), [XHR], [EVENTSOURCE], [BEACON], and <a>'s ping. This directive also controls

WebSocket [WEBSOCKETS] connections, though those aren’t technically part of Fetch.

1. Let name be the result of executing §6.7.1 Get the effective directive for request on request.

2. If the result of executing §6.7.4 Should fetch directive execute on name, child-src and policy is

"No", return "Allowed".

3. Return the result of executing the pre-request check for the directive whose name is name on

request and policy, using this directive’s value for the comparison.

6.1.1.2. child-src Post-request check

1. Let name be the result of executing §6.7.1 Get the effective directive for request on request.

2. If the result of executing §6.7.4 Should fetch directive execute on name, child-src and policy is

"No", return "Allowed".

3. Return the result of executing the post-request check for the directive whose name is name on

request, response, and policy, using this directive’s value for the comparison.

6.1.2. connect-src

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

39 of 113 16/01/2021, 17:19

This directive’s pre-request check is as follows:

Given a request (request) and a policy (policy):

EXAMPLE 6

JavaScript offers a few mechanisms that directly connect to an external server to send or receive

information. EventSource maintains an open HTTP connection to a server in order to receive

push notifications, WebSockets open a bidirectional communication channel between your

browser and a server, and XMLHttpRequest makes arbitrary HTTP requests on your behalf. These

are powerful APIs that enable useful functionality, but also provide tempting avenues for data

exfiltration.

The connect-src directive allows you to ensure that these and similar sorts of connections are

only opened to origins you trust. Sending a policy that defines a list of source expressions for this

directive is straightforward. For example, to limit connections to only https://example.com,

send the following header:

Content-Security-Policy: connect-src https://example.com/

Fetches for the following code will all return network errors, as the URLs provided do not match

connect-src's source list:

...

<script>

var xhr = new XMLHttpRequest();

 xhr.open('GET', 'https://example.org/');

 xhr.send();

var ws = new WebSocket("wss://example.org/");

var es = new EventSource("https://example.org/");

 navigator.sendBeacon("https://example.org/", { ... });

</script>

6.1.2.1. connect-src Pre-request check

1. Let name be the result of executing §6.7.1 Get the effective directive for request on request.

2. If the result of executing §6.7.4 Should fetch directive execute on name, connect-src and policy

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

40 of 113 16/01/2021, 17:19

This directive’s post-request check is as follows:

Given a request (request), a response (response), and a policy (policy):

The default-src directive serves as a fallback for the other fetch directives. The syntax for the

directive’s name and value is described by the following ABNF:

directive-name = "default-src"

directive-value = serialized-source-list

If a default-src directive is present in a policy, its value will be used as the policy’s default source list.

That is, given default-src 'none'; script-src 'self', script requests will use 'self' as the

source list to match against. Other requests will use 'none'. This is spelled out in more detail in the

§4.1.3 Should request be blocked by Content Security Policy? and §4.1.4 Should response to request

be blocked by Content Security Policy? algorithms.

is "No", return "Allowed".

3. If the result of executing §6.6.2.3 Does request match source list? on request and this directive’s

value is "Does Not Match", return "Blocked".

4. Return "Allowed".

6.1.2.2. connect-src Post-request check

1. Let name be the result of executing §6.7.1 Get the effective directive for request on request.

2. If the result of executing §6.7.4 Should fetch directive execute on name, connect-src and policy

is "No", return "Allowed".

3. If the result of executing §6.6.2.4 Does response to request match source list? on response,

request, and this directive’s value is "Does Not Match", return "Blocked".

4. Return "Allowed".

6.1.3. default-src

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

41 of 113 16/01/2021, 17:19

EXAMPLE 7

The following header:

Content-Security-Policy: default-src 'self'

will have the same behavior as the following header:

Content-Security-Policy: connect-src 'self';

font-src 'self';

frame-src 'self';

img-src 'self';

manifest-src 'self';

media-src 'self';

prefetch-src 'self';

object-src 'self';

script-src-elem 'self';

script-src-attr 'self';

style-src-elem 'self';

style-src-attr 'self';

worker-src 'self'

That is, when default-src is set, every fetch directive that isn’t explicitly set will fall back to the

value default-src specifies.

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

42 of 113 16/01/2021, 17:19

This directive’s pre-request check is as follows:

Given a request (request) and a policy (policy):

EXAMPLE 8

There is no inheritance. If a script-src directive is explicitly specified, for example, then the

value of default-src has no influence on script requests. That is, the following header:

Content-Security-Policy: default-src 'self'; script-src-elem https://example.com

will have the same behavior as the following header:

Content-Security-Policy: connect-src 'self';

font-src 'self';

frame-src 'self';

img-src 'self';

manifest-src 'self';

media-src 'self';

prefetch-src 'self';

object-src 'self';

script-src-elem https://example.com;

script-src-attr 'self';

style-src-elem 'self';

style-src-attr 'self';

worker-src 'self'

Given this behavior, one good way to build a policy for a site would be to begin with a default-

src of 'none', and to build up a policy from there which allowed only those resource types which

are necessary for the particular page the policy will apply to.

6.1.3.1. default-src Pre-request check

1. Let name be the result of executing §6.7.1 Get the effective directive for request on request.

2. If the result of executing §6.7.4 Should fetch directive execute on name, default-src and policy

is "No", return "Allowed".

3. Return the result of executing the pre-request check for the directive whose name is name on

request and policy, using this directive’s value for the comparison.

6.1.3.2. default-src Post-request check

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

43 of 113 16/01/2021, 17:19

This directive’s post-request check is as follows:

Given a request (request), a response (response), and a policy (policy):

This directive’s inline check algorithm is as follows:

Given an Element (element), a string (type), a policy (policy) and a string (source):

The font-src directive restricts the URLs from which font resources may be loaded. The syntax for the

directive’s name and value is described by the following ABNF:

directive-name = "font-src"

directive-value = serialized-source-list

1. Let name be the result of executing §6.7.1 Get the effective directive for request on request.

2. If the result of executing §6.7.4 Should fetch directive execute on name, default-src and policy

is "No", return "Allowed".

3. Return the result of executing the post-request check for the directive whose name is name on

request, response, and policy, using this directive’s value for the comparison.

6.1.3.3. default-src Inline Check

1. Let name be the result of executing §6.7.2 Get the effective directive for inline checks on type.

2. If the result of executing §6.7.4 Should fetch directive execute on name, default-src and policy

is "No", return "Allowed".

3. Otherwise, return the result of executing the inline check for the directive whose name is name

on element, type, policy and source, using this directive’s value for the comparison.

6.1.4. font-src

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

44 of 113 16/01/2021, 17:19

This directive’s pre-request check is as follows:

Given a request (request) and a policy (policy):

This directive’s post-request check is as follows:

Given a request (request), a response (response), and a policy (policy):

EXAMPLE 9

Given a page with the following Content Security Policy:

Content-Security-Policy: font-src https://example.com/

Fetches for the following code will return a network errors, as the URL provided do not match

font-src's source list:

<style>

@font-face {

font-family: "Example Font";

src: url("https://example.org/font");

}

body {

font-family: "Example Font";

}

</style>

6.1.4.1. font-src Pre-request check

1. Let name be the result of executing §6.7.1 Get the effective directive for request on request.

2. If the result of executing §6.7.4 Should fetch directive execute on name, font-src and policy is

"No", return "Allowed".

3. If the result of executing §6.6.2.3 Does request match source list? on request and this directive’s

value is "Does Not Match", return "Blocked".

4. Return "Allowed".

6.1.4.2. font-src Post-request check

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

45 of 113 16/01/2021, 17:19

The frame-src directive restricts the URLs which may be loaded into nested browsing contexts. The

syntax for the directive’s name and value is described by the following ABNF:

directive-name = "frame-src"

directive-value = serialized-source-list

This directive’s pre-request check is as follows:

Given a request (request) and a policy (policy):

1. Let name be the result of executing §6.7.1 Get the effective directive for request on request.

2. If the result of executing §6.7.4 Should fetch directive execute on name, font-src and policy is

"No", return "Allowed".

3. If the result of executing §6.6.2.4 Does response to request match source list? on response,

request, and this directive’s value is "Does Not Match", return "Blocked".

4. Return "Allowed".

6.1.5. frame-src

EXAMPLE 10

Given a page with the following Content Security Policy:

Content-Security-Policy: frame-src https://example.com/

Fetches for the following code will return a network errors, as the URL provided do not match

frame-src's source list:

<iframe src="https://example.org/">

</iframe>

6.1.5.1. frame-src Pre-request check

1. Let name be the result of executing §6.7.1 Get the effective directive for request on request.

2. If the result of executing §6.7.4 Should fetch directive execute on name, frame-src and policy is

"No", return "Allowed".

3. If the result of executing §6.6.2.3 Does request match source list? on request and this directive’s

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

46 of 113 16/01/2021, 17:19

This directive’s post-request check is as follows:

Given a request (request), a response (response), and a policy (policy):

The img-src directive restricts the URLs from which image resources may be loaded. The syntax for

the directive’s name and value is described by the following ABNF:

directive-name = "img-src"

directive-value = serialized-source-list

This directive controls requests which load images. More formally, this includes requests whose

destination is "image" [FETCH].

value is "Does Not Match", return "Blocked".

4. Return "Allowed".

6.1.5.2. frame-src Post-request check

1. Let name be the result of executing §6.7.1 Get the effective directive for request on request.

2. If the result of executing §6.7.4 Should fetch directive execute on name, frame-src and policy is

"No", return "Allowed".

3. If the result of executing §6.6.2.4 Does response to request match source list? on response,

request, and this directive’s value is "Does Not Match", return "Blocked".

4. Return "Allowed".

6.1.6. img-src

EXAMPLE 11

Given a page with the following Content Security Policy:

Content-Security-Policy: img-src https://example.com/

Fetches for the following code will return a network errors, as the URL provided do not match

img-src's source list:

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

47 of 113 16/01/2021, 17:19

This directive’s pre-request check is as follows:

Given a request (request) and a policy (policy):

This directive’s post-request check is as follows:

Given a request (request), a response (response), and a policy (policy):

The manifest-src directive restricts the URLs from which application manifests may be loaded

[APPMANIFEST]. The syntax for the directive’s name and value is described by the following

ABNF:

directive-name = "manifest-src"

directive-value = serialized-source-list

6.1.6.1. img-src Pre-request check

1. Let name be the result of executing §6.7.1 Get the effective directive for request on request.

2. If the result of executing §6.7.4 Should fetch directive execute on name, img-src and policy is

"No", return "Allowed".

3. If the result of executing §6.6.2.3 Does request match source list? on request and this directive’s

value is "Does Not Match", return "Blocked".

4. Return "Allowed".

6.1.6.2. img-src Post-request check

1. Let name be the result of executing §6.7.1 Get the effective directive for request on request.

2. If the result of executing §6.7.4 Should fetch directive execute on name, frame-src and policy is

"No", return "Allowed".

3. If the result of executing §6.6.2.4 Does response to request match source list? on response,

request, and this directive’s value is "Does Not Match", return "Blocked".

4. Return "Allowed".

6.1.7. manifest-src

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

48 of 113 16/01/2021, 17:19

This directive’s pre-request check is as follows:

Given a request (request) and a policy (policy):

This directive’s post-request check is as follows:

Given a request (request), a response (response), and a policy (policy):

EXAMPLE 12

Given a page with the following Content Security Policy:

Content-Security-Policy: manifest-src https://example.com/

Fetches for the following code will return a network errors, as the URL provided do not match

manifest-src's source list:

<link rel="manifest" href="https://example.org/manifest">

6.1.7.1. manifest-src Pre-request check

1. Let name be the result of executing §6.7.1 Get the effective directive for request on request.

2. If the result of executing §6.7.4 Should fetch directive execute on name, manifest-src and

policy is "No", return "Allowed".

3. If the result of executing §6.6.2.3 Does request match source list? on request and this directive’s

value is "Does Not Match", return "Blocked".

4. Return "Allowed".

6.1.7.2. manifest-src Post-request check

1. Let name be the result of executing §6.7.1 Get the effective directive for request on request.

2. If the result of executing §6.7.4 Should fetch directive execute on name, manifest-src and

policy is "No", return "Allowed".

3. If the result of executing §6.6.2.4 Does response to request match source list? on response,

request, and this directive’s value is "Does Not Match", return "Blocked".

4. Return "Allowed".

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

49 of 113 16/01/2021, 17:19

The media-src directive restricts the URLs from which video, audio, and associated text track

resources may be loaded. The syntax for the directive’s name and value is described by the following

ABNF:

directive-name = "media-src"

directive-value = serialized-source-list

This directive’s pre-request check is as follows:

Given a request (request) and a policy (policy):

6.1.8. media-src

EXAMPLE 13

Given a page with the following Content Security Policy:

Content-Security-Policy: media-src https://example.com/

Fetches for the following code will return a network errors, as the URL provided do not match

media-src's source list:

<audio src="https://example.org/audio"></audio>

<video src="https://example.org/video">

<track kind="subtitles" src="https://example.org/subtitles">

</video>

6.1.8.1. media-src Pre-request check

1. Let name be the result of executing §6.7.1 Get the effective directive for request on request.

2. If the result of executing §6.7.4 Should fetch directive execute on name, media-src and policy is

"No", return "Allowed".

3. If the result of executing §6.6.2.3 Does request match source list? on request and this directive’s

value is "Does Not Match", return "Blocked".

4. Return "Allowed".

6.1.8.2. media-src Post-request check

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

50 of 113 16/01/2021, 17:19

This directive’s post-request check is as follows:

Given a request (request), a response (response), and a policy (policy):

The prefetch-src directive restricts the URLs from which resources may be prefetched or prerendered.

The syntax for the directive’s name and value is described by the following ABNF:

directive-name = "prefetch-src"

directive-value = serialized-source-list

This directive’s pre-request check is as follows:

Given a request (request) and a policy (policy):

1. Let name be the result of executing §6.7.1 Get the effective directive for request on request.

2. If the result of executing §6.7.4 Should fetch directive execute on name, media-src and policy is

"No", return "Allowed".

3. If the result of executing §6.6.2.4 Does response to request match source list? on response,

request, and this directive’s value is "Does Not Match", return "Blocked".

4. Return "Allowed".

6.1.9. prefetch-src

EXAMPLE 14

Given a page with the following Content Security Policy:

Content-Security-Policy: prefetch-src https://example.com/

Fetches for the following code will return network errors, as the URLs provided do not match

prefetch-src's source list:

<link rel="prefetch" src="https://example.org/"></link>

<link rel="prerender" src="https://example.org/"></link>

6.1.9.1. prefetch-src Pre-request check

1. Let name be the result of executing §6.7.1 Get the effective directive for request on request.

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

51 of 113 16/01/2021, 17:19

This directive’s post-request check is as follows:

Given a request (request), a response (response), and a policy (policy):

The object-src directive restricts the URLs from which plugin content may be loaded. The syntax for

the directive’s name and value is described by the following ABNF:

directive-name = "object-src"

directive-value = serialized-source-list

2. If the result of executing §6.7.4 Should fetch directive execute on name, prefetch-src and

policy is "No", return "Allowed".

3. If the result of executing §6.6.2.3 Does request match source list? on request and this directive’s

value is "Does Not Match", return "Blocked".

4. Return "Allowed".

6.1.9.2. prefetch-src Post-request check

1. Let name be the result of executing §6.7.1 Get the effective directive for request on request.

2. If the result of executing §6.7.4 Should fetch directive execute on name, prefetch-src and

policy is "No", return "Allowed".

3. If the result of executing §6.6.2.4 Does response to request match source list? on response,

request, and this directive’s value is "Does Not Match", return "Blocked".

4. Return "Allowed".

6.1.10. object-src

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

52 of 113 16/01/2021, 17:19

If plugin content is loaded without an associated URL (perhaps an <object> element lacks a data

attribute, but loads some default plugin based on the specified type), it MUST be blocked if object-

src's value is 'none', but will otherwise be allowed.

This directive’s pre-request check is as follows:

Given a request (request) and a policy (policy):

EXAMPLE 15

Given a page with the following Content Security Policy:

Content-Security-Policy: object-src https://example.com/

Fetches for the following code will return a network errors, as the URL provided do not match

object-src's source list:

<embed src="https://example.org/flash"></embed>

<object data="https://example.org/flash"></object>

<applet archive="https://example.org/flash"></applet>

Note: The object-src directive acts upon any request made on behalf of an <object>, <embed>, or

applet element. This includes requests which would populate the nested browsing context

generated by the former two (also including navigations). This is true even when the data is

semantically equivalent to content which would otherwise be restricted by another directive, such

as an <object> element with a text/html MIME type.

Note: When a plugin resource is navigated to directly (that is, as a plugin document in the top-

level browsing context or a nested browsing context, and not as an embedded subresource via

<embed>, <object>, or applet), any policy delivered along with that resource will be applied to the

plugin document. This means, for instance, that developers can prevent the execution of arbitrary

resources as plugin content by delivering the policy object-src 'none' along with a response.

Given plugins' power (and the sometimes-interesting security model presented by Flash and

others), this could mitigate the risk of attack vectors like Rosetta Flash.

6.1.10.1. object-src Pre-request check

1. Let name be the result of executing §6.7.1 Get the effective directive for request on request.

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

53 of 113 16/01/2021, 17:19

This directive’s post-request check is as follows:

Given a request (request), a response (response), and a policy (policy):

The script-src directive restricts the locations from which scripts may be executed. This includes not

only URLs loaded directly into <script> elements, but also things like inline script blocks and XSLT

stylesheets [XSLT] which can trigger script execution. The syntax for the directive’s name and value

is described by the following ABNF:

The script-src directive acts as a default fallback for all script-like destinations (including worker-

specific destinations if worker-src is not present). Unless granularity is desired script-src should

be used in favor of script-src-attr and script-src-elem as in most situations there is no

particular reason to have separate lists of permissions for inline event handlers and <script> elements.

directive-name = "script-src"

directive-value = serialized-source-list

The script-src directive governs five things:

2. If the result of executing §6.7.4 Should fetch directive execute on name, object-src and policy

is "No", return "Allowed".

3. If the result of executing §6.6.2.3 Does request match source list? on request and this directive’s

value is "Does Not Match", return "Blocked".

4. Return "Allowed".

6.1.10.2. object-src Post-request check

1. Let name be the result of executing §6.7.1 Get the effective directive for request on request.

2. If the result of executing §6.7.4 Should fetch directive execute on name, object-src and policy

is "No", return "Allowed".

3. If the result of executing §6.6.2.4 Does response to request match source list? on response,

request, and this directive’s value is "Does Not Match", return "Blocked".

4. Return "Allowed".

6.1.11. script-src

1. Script requests MUST pass through §4.1.3 Should request be blocked by Content Security

Policy?.

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

54 of 113 16/01/2021, 17:19

This directive’s pre-request check is as follows:

Given a request (request) and a policy (policy):

This directive’s post-request check is as follows:

2. Script responses MUST pass through §4.1.4 Should response to request be blocked by Content

Security Policy?.

3. Inline <script> blocks MUST pass through §4.2.4 Should element’s inline type behavior be

blocked by Content Security Policy?. Their behavior will be blocked unless every policy allows

inline script, either implicitly by not specifying a script-src (or default-src) directive, or

explicitly, by specifying "unsafe-inline", a nonce-source or a hash-source that matches the

inline block.

4. The following JavaScript execution sinks are gated on the "unsafe-eval" source expression:

eval()

Function()

setTimeout() with an initial argument which is not callable.

setInterval() with an initial argument which is not callable.

Note: If a user agent implements non-standard sinks like setImmediate() or execScript(),

they SHOULD also be gated on "unsafe-eval". Note: Since "unsafe-eval" acts as a global

page flag, script-src-attr and script-src-elem are not used when performing this

check, instead script-src (or it’s fallback directive) is always used.

5. Navigation to javascript: URLs MUST pass through §6.1.11.3 script-src Inline Check.

6.1.11.1. script-src Pre-request check

1. Let name be the result of executing §6.7.1 Get the effective directive for request on request.

2. If the result of executing §6.7.4 Should fetch directive execute on name, script-src and policy

is "No", return "Allowed".

3. Return the result of executing §6.6.1.1 Script directives pre-request check on request and this

directive.

6.1.11.2. script-src Post-request check

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

55 of 113 16/01/2021, 17:19

Given a request (request), a response (response), and a policy (policy):

This directive’s inline check algorithm is as follows:

Given an Element (element), a string (type), a policy (policy) and a string (source):

The syntax for the directive’s name and value is described by the following ABNF:

directive-name = "script-src-elem"

directive-value = serialized-source-list

The script-src-elem directive applies to all script requests and script blocks. Attributes that execute

script (inline event handlers) are controlled via script-src-attr.

As such, the following differences exist when comparing to script-src:

1. Let name be the result of executing §6.7.1 Get the effective directive for request on request.

2. If the result of executing §6.7.4 Should fetch directive execute on name, script-src and policy

is "No", return "Allowed".

3. Return the result of executing §6.6.1.2 Script directives post-request check on request, response

and this directive.

6.1.11.3. script-src Inline Check

1. Assert: element is not null or type is "navigation".

2. Let name be the result of executing §6.7.2 Get the effective directive for inline checks on type.

3. If the result of executing §6.7.4 Should fetch directive execute on name, script-src and policy

is "No", return "Allowed".

4. If the result of executing §6.6.3.3 Does element match source list for type and source? on

element, this directive’s value, type, and source, is "Does Not Match", return "Blocked".

5. Return "Allowed".

6.1.12. script-src-elem

script-src-elem applies to inline checks whose |type| is "script" and "navigation" (and is

ignored for inline checks whose |type| is "script attribute").

script-src-elem's value is not used for JavaScript execution sink checks that are gated on the

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

56 of 113 16/01/2021, 17:19

This directive’s pre-request check is as follows:

Given a request (request) and a policy (policy):

This directive’s post-request check is as follows:

Given a request (request), a response (response), and a policy (policy):

This directive’s inline check algorithm is as follows:

Given an Element (element), a string (type), a policy (policy) and a string (source):

"unsafe-eval" check.

script-src-elem is not used as a fallback for the worker-src directive. The worker-src

checks still fall back on the script-src directive.

6.1.12.1. script-src-elem Pre-request check

1. Let name be the result of executing §6.7.1 Get the effective directive for request on request.

2. If the result of executing §6.7.4 Should fetch directive execute on name, script-src-elem and

policy is "No", return "Allowed".

3. Return the result of executing §6.6.1.1 Script directives pre-request check on request and this

directive.

6.1.12.2. script-src-elem Post-request check

1. Let name be the result of executing §6.7.1 Get the effective directive for request on request.

2. If the result of executing §6.7.4 Should fetch directive execute on name, script-src-elem and

policy is "No", return "Allowed".

3. Return the result of executing §6.6.1.2 Script directives post-request check on request, response

and this directive.

6.1.12.3. script-src-elem Inline Check

1. Assert: element is not null or type is "navigation".

2. Let name be the result of executing §6.7.2 Get the effective directive for inline checks on type.

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

57 of 113 16/01/2021, 17:19

The syntax for the directive’s name and value is described by the following ABNF:

directive-name = "script-src-attr"

directive-value = serialized-source-list

The script-src-attr directive applies to event handlers and, if present, it will override the script-src

directive for relevant checks.

This directive’s inline check algorithm is as follows:

Given an Element (element), a string (type), a policy (policy) and a string (source):

The style-src directive restricts the locations from which style may be applied to a Document. The

syntax for the directive’s name and value is described by the following ABNF:

directive-name = "style-src"

directive-value = serialized-source-list

3. If the result of executing §6.7.4 Should fetch directive execute on name, script-src-elem, and

policy is "No", return "Allowed".

4. If the result of executing §6.6.3.3 Does element match source list for type and source? on

element, this directive’s value, type, and source is "Does Not Match", return "Blocked".

5. Return "Allowed".

6.1.13. script-src-attr

6.1.13.1. script-src-attr Inline Check

1. Assert: element is not null or type is "navigation".

2. Let name be the result of executing §6.7.2 Get the effective directive for inline checks on type.

3. If the result of executing §6.7.4 Should fetch directive execute on name, script-src-attr and

policy is "No", return "Allowed".

4. If the result of executing §6.6.3.3 Does element match source list for type and source? on

element, this directive’s value, type, and source, is "Does Not Match", return "Blocked".

5. Return "Allowed".

6.1.14. style-src

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

58 of 113 16/01/2021, 17:19

The style-src directive governs several things:

This directive’s pre-request check is as follows:

Given a request (request) and a policy (policy):

1. Style requests MUST pass through §4.1.3 Should request be blocked by Content Security

Policy?. This includes:

1. Stylesheet requests originating from a <link> element.

2. Stylesheet requests originating from the ‘@import’ rule.

3. Stylesheet requests originating from a Link HTTP response header field [RFC8288].

2. Responses to style requests MUST pass through §4.1.4 Should response to request be blocked by

Content Security Policy?.

3. Inline <style> blocks MUST pass through §4.2.4 Should element’s inline type behavior be

blocked by Content Security Policy?. The styles will be blocked unless every policy allows inline

style, either implicitly by not specifying a style-src (or default-src) directive, or explicitly,

by specifying "unsafe-inline", a nonce-source or a hash-source that matches the inline block.

4. The following CSS algorithms are gated on the unsafe-eval source expression:

This would include, for example, all invocations of CSSOM’s various cssText setters and

insertRule methods [CSSOM] [HTML].

1. insert a CSS rule

2. parse a CSS rule,

3. parse a CSS declaration block

4. parse a group of selectors

ISSUE 9 This needs to be better explained. <https://github.com/w3c/webappsec-

csp/issues/212>

6.1.14.1. style-src Pre-request Check

1. Let name be the result of executing §6.7.1 Get the effective directive for request on request.

2. If the result of executing §6.7.4 Should fetch directive execute on name, style-src and policy is

"No", return "Allowed".

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

59 of 113 16/01/2021, 17:19

This directive’s post-request check is as follows:

Given a request (request), a response (response), and a policy (policy):

This directive’s inline check algorithm is as follows:

Given an Element (element), a string (type), a policy (policy) and a string (source):

This directive’s initialization algorithm is as follows:

3. If the result of executing §6.6.2.2 Does nonce match source list? on request’s cryptographic

nonce metadata and this directive’s value is "Matches", return "Allowed".

4. If the result of executing §6.6.2.3 Does request match source list? on request and this directive’s

value is "Does Not Match", return "Blocked".

5. Return "Allowed".

6.1.14.2. style-src Post-request Check

1. Let name be the result of executing §6.7.1 Get the effective directive for request on request.

2. If the result of executing §6.7.4 Should fetch directive execute on name, style-src and policy is

"No", return "Allowed".

3. If the result of executing §6.6.2.2 Does nonce match source list? on request’s cryptographic

nonce metadata and this directive’s value is "Matches", return "Allowed".

4. If the result of executing §6.6.2.4 Does response to request match source list? on response,

request, and this directive’s value is "Does Not Match", return "Blocked".

5. Return "Allowed".

6.1.14.3. style-src Inline Check

1. Let name be the result of executing §6.7.2 Get the effective directive for inline checks on type.

2. If the result of executing §6.7.4 Should fetch directive execute on name, style-src and policy is

"No", return "Allowed".

3. If the result of executing §6.6.3.3 Does element match source list for type and source? on

element, this directive’s value, type, and source, is "Does Not Match", return "Blocked".

4. Return "Allowed".

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

60 of 113 16/01/2021, 17:19

The syntax for the directive’s name and value is described by the following ABNF:

directive-name = "style-src-elem"

directive-value = serialized-source-list

The style-src-elem directive governs the behaviour of styles except for styles defined in inline

attributes.

This directive’s pre-request check is as follows:

Given a request (request) and a policy (policy):

This directive’s post-request check is as follows:

Given a request (request), a response (response), and a policy (policy):

ISSUE 10 Do something interesting to the execution context in order to lock down interesting

CSSOM algorithms. I don’t think CSSOM gives us any hooks here, so let’s work with them to put

something reasonable together.

6.1.15. style-src-elem

6.1.15.1. style-src-elem Pre-request Check

1. Let name be the result of executing §6.7.1 Get the effective directive for request on request.

2. If the result of executing §6.7.4 Should fetch directive execute on name, style-src-elem and

policy is "No", return "Allowed".

3. If the result of executing §6.6.2.2 Does nonce match source list? on request’s cryptographic

nonce metadata and this directive’s value is "Matches", return "Allowed".

4. If the result of executing §6.6.2.3 Does request match source list? on request and this directive’s

value is "Does Not Match", return "Blocked".

5. Return "Allowed".

6.1.15.2. style-src-elem Post-request Check

1. Let name be the result of executing §6.7.1 Get the effective directive for request on request.

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

61 of 113 16/01/2021, 17:19

This directive’s inline check algorithm is as follows:

Given an Element (element), a string (type), a policy (policy) and a string (source):

The syntax for the directive’s name and value is described by the following ABNF:

directive-name = "style-src-attr"

directive-value = serialized-source-list

The style-src-attr directive governs the behaviour of style attributes.

This directive’s inline check algorithm is as follows:

Given an Element (element), a string (type), a policy (policy) and a string (source):

2. If the result of executing §6.7.4 Should fetch directive execute on name, style-src-elem and

policy is "No", return "Allowed".

3. If the result of executing §6.6.2.2 Does nonce match source list? on request’s cryptographic

nonce metadata and this directive’s value is "Matches", return "Allowed".

4. If the result of executing §6.6.2.4 Does response to request match source list? on response,

request, and this directive’s value is "Does Not Match", return "Blocked".

5. Return "Allowed".

6.1.15.3. style-src-elem Inline Check

1. Let name be the result of executing §6.7.2 Get the effective directive for inline checks on type.

2. If the result of executing §6.7.4 Should fetch directive execute on name, style-src-elem and

policy is "No", return "Allowed".

3. If the result of executing §6.6.3.3 Does element match source list for type and source? on

element, this directive’s value, type, and source, is "Does Not Match", return "Blocked".

4. Return "Allowed".

6.1.16. style-src-attr

6.1.16.1. style-src-attr Inline Check

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

62 of 113 16/01/2021, 17:19

The worker-src directive restricts the URLs which may be loaded as a Worker, SharedWorker, or

ServiceWorker. The syntax for the directive’s name and value is described by the following ABNF:

directive-name = "worker-src"

directive-value = serialized-source-list

This directive’s pre-request check is as follows:

Given a request (request) and a policy (policy):

1. Let name be the result of executing §6.7.2 Get the effective directive for inline checks on type.

2. If the result of executing §6.7.4 Should fetch directive execute on name, style-src-attr and

policy is "No", return "Allowed".

3. If the result of executing §6.6.3.3 Does element match source list for type and source? on

element, this directive’s value, type, and source, is "Does Not Match", return "Blocked".

4. Return "Allowed".

6.1.17. worker-src

EXAMPLE 16

Given a page with the following Content Security Policy:

Content-Security-Policy: worker-src https://example.com/

Fetches for the following code will return a network errors, as the URL provided do not match

worker-src's source list:

<script>

var blockedWorker = new Worker("data:application/javascript,...");

 blockedWorker = new SharedWorker("https://example.org/");

 navigator.serviceWorker.register('https://example.org/sw.js');

</script>

6.1.17.1. worker-src Pre-request Check

1. Let name be the result of executing §6.7.1 Get the effective directive for request on request.

2. If the result of executing §6.7.4 Should fetch directive execute on name, worker-src and policy

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

63 of 113 16/01/2021, 17:19

This directive’s post-request check is as follows:

Given a request (request), a response (response), and a policy (policy):

The following directives govern the properties of a document or worker environment to which a

policy applies.

The base-uri directive restricts the URLs which can be used in a Document's <base> element. The

syntax for the directive’s name and value is described by the following ABNF:

directive-name = "base-uri"

directive-value = serialized-source-list

The following algorithm is called during HTML’s set the frozen base url algorithm in order to monitor

and enforce this directive:

is "No", return "Allowed".

3. If the result of executing §6.6.2.3 Does request match source list? on request and this directive’s

value is "Does Not Match", return "Blocked".

4. Return "Allowed".

6.1.17.2. worker-src Post-request Check

1. Let name be the result of executing §6.7.1 Get the effective directive for request on request.

2. If the result of executing §6.7.4 Should fetch directive execute on name, worker-src and policy

is "No", return "Allowed".

3. If the result of executing §6.6.2.4 Does response to request match source list? on response,

request, and this directive’s value is "Does Not Match", return "Blocked".

4. Return "Allowed".

6.2. Document Directives

6.2.1. base-uri

6.2.1.1. Is base allowed for document?

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

64 of 113 16/01/2021, 17:19

Given a URL (base), and a Document (document), this algorithm returns "Allowed" if base may be

used as the value of a <base> element’s href attribute, and "Blocked" otherwise:

The plugin-types directive restricts the set of plugins that can be embedded into a document by

limiting the types of resources which can be loaded. The directive’s syntax is described by the

following ABNF grammar:

directive-name = "plugin-types"

directive-value = media-type-list

media-type-list = media-type *(required-ascii-whitespace media-type)

media-type = type "/" subtype

; type and subtype are defined in RFC 2045

If a plugin-types directive is present, instantiation of an <embed> or <object> element will fail if any

of the following conditions hold:

1. For each policy in document’s global object’s csp list:

1. Let source list be null.

2. If a directive whose name is "base-uri" is present in policy’s directive set, set source list to

that directive’s value.

3. If source list is null, skip to the next policy.

4. If the result of executing §6.6.2.5 Does url match source list in origin with redirect count?

on base, source list, document’s fallback base URL’s origin, and 0 is "Does Not Match":

1. Let violation be the result of executing §2.4.1 Create a violation object for global,

policy, and directive on document’s global object, policy, and "base-uri".

2. Set violation’s resource to "inline".

3. Execute §5.3 Report a violation on violation.

4. If policy’s disposition is "enforce", return "Blocked".

Note: We compare against the fallback base URL in order to deal correctly with things like an

iframe srcdoc Document which has been sandboxed into an opaque origin.

2. Return "Allowed".

6.2.2. plugin-types

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

65 of 113 16/01/2021, 17:19

This directive’s post-request check algorithm is as follows:

Given a request (request), a response (response), and a policy (policy):

1. The element does not explicitly declare a valid MIME type via a type attribute.

2. The declared type does not match one of the items in the directive’s value.

3. The fetched resource does not match the declared type.

EXAMPLE 17

Given a page with the following Content Security Policy:

Content-Security-Policy: plugin-types application/pdf

Fetches for the following code will all return network errors:

<!-- No 'type' declaration -->

<object data="https://example.com/flash"></object>

<!-- Non-matching 'type' declaration -->

<object data="https://example.com/flash" type="application/x-shockwave-flash"></

<!-- Non-matching resource -->

<object data="https://example.com/flash" type="application/pdf"></object>

If the page allowed Flash content by sending the following header:

Content-Security-Policy: plugin-types application/x-shockwave-flash

Then the second item above would load successfully:

<!-- Matching 'type' declaration and resource -->

<object data="https://example.com/flash" type="application/x-shockwave-flash"></

6.2.2.1. plugin-types Post-Request Check

1. Assert: policy is unused.

2. If request’s destination is either "object" or "embed":

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

66 of 113 16/01/2021, 17:19

Given an Element (plugin element), this algorithm returns "Blocked" or "Allowed" based on the

element’s type attribute and the policy applied to its document:

The sandbox directive specifies an HTML sandbox policy which the user agent will apply to a

resource, just as though it had been included in an <iframe> with a sandbox property.

The directive’s syntax is described by the following ABNF grammar, with the additional requirement

that each token value MUST be one of the keywords defined by HTML specification as allowed

values for the <iframe> sandbox attribute [HTML].

directive-name = "sandbox"

directive-value = "" / token *(required-ascii-whitespace token)

This directive has no reporting requirements; it will be ignored entirely when delivered in a Content-

Security-Policy-Report-Only header, or within a <meta> element.

1. Let type be the result of extracting a MIME type from response’s header list.

2. If type is not an ASCII case-insensitive match for any item in this directive’s value, return

"Blocked".

3. Return "Allowed".

6.2.2.2. Should plugin element be blocked a priori by Content Security Policy?:

1. For each policy in plugin element’s node document’s CSP list:

1. If policy contains a directive (directive) whose name is plugin-types:

1. Let type be "application/x-java-applet" if plugin element is an applet element,

or plugin element’s type attribute’s value if present, or "null" otherwise.

2. Return "Blocked" if any of the following are true:

1. type is null.

2. type is not a valid MIME type.

3. type is not an ASCII case-insensitive match for any item in directive’s value.

2. Return "Allowed".

6.2.3. sandbox

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

67 of 113 16/01/2021, 17:19

This directive’s response check algorithm is as follows:

Given a request (request), a response (response), and a policy (policy):

This directive’s initialization algorithm is responsible for adjusting a Document's forced sandboxing

flag set according to the sandbox values present in its policies, as follows:

Given a Document or global object (context), a response (response), and a policy (policy):

6.2.3.1. sandbox Response Check

1. Assert: response is unused.

2. If policy’s disposition is not "enforce", then return "Allowed".

3. If request’s destination is one of "serviceworker", "sharedworker", or "worker":

1. If the result of the Parse a sandboxing directive algorithm using this directive’s value as the

input contains either the sandboxed scripts browsing context flag or the sandboxed origin

browsing context flag flags, return "Blocked".

Note: This will need to change if we allow Workers to be sandboxed into unique origins,

which seems like a pretty reasonable thing to do.

4. Return "Allowed".

6.2.3.2. sandbox Initialization

1. Assert: response is unused.

2. If policy’s disposition is not "enforce", or context is not a Document, then abort this algorithm.

Note: This will need to change if we allow Workers to be sandboxed, which seems like a

pretty reasonable thing to do.

3. Parse a sandboxing directive using this directive’s value as the input, and context’s forced

sandboxing flag set as the output.

6.3. Navigation Directives

6.3.1. form-action

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

68 of 113 16/01/2021, 17:19

The form-action directive restricts the URLs which can be used as the target of a form submissions

from a given context. The directive’s syntax is described by the following ABNF grammar:

directive-name = "form-action"

directive-value = serialized-source-list

Given a request (request), a string navigation type ("form-submission" or "other"), two browsing

contexts (source and target), and a policy (policy) this algorithm returns "Blocked" if a form

submission violates the form-action directive’s constraints, and "Allowed" otherwise. This

constitutes the form-action directive’s pre-navigation check:

The frame-ancestors directive restricts the URLs which can embed the resource using <frame>,

<iframe>, <object>, <embed>, or applet element. Resources can use this directive to avoid many UI

Redressing [UISECURITY] attacks, by avoiding the risk of being embedded into potentially hostile

contexts.

The directive’s syntax is described by the following ABNF grammar:

directive-name = "frame-ancestors"

directive-value = ancestor-source-list

ancestor-source-list = (ancestor-source *(required-ascii-whitespace ancestor-source

ancestor-source = scheme-source / host-source / "'self'"

The frame-ancestors directive MUST be ignored when contained in a policy declared via a <meta>

element.

6.3.1.1. form-action Pre-Navigation Check

1. Assert: source, target, and policy are unused in this algorithm, as form-action is concerned only

with details of the outgoing request.

2. If navigation type is "form-submission":

1. If the result of executing §6.6.2.3 Does request match source list? on request and this

directive’s value is "Does Not Match", return "Blocked".

3. Return "Allowed".

6.3.2. frame-ancestors

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

69 of 113 16/01/2021, 17:19

Given a request (request), a string navigation type ("form-submission" or "other"), a response

(navigation response) two browsing contexts (source and target), a string check type ("source" or

"response"), and a policy (policy) this algorithm returns "Blocked" if one or more of the ancestors of

target violate the frame-ancestors directive delivered with the response, and "Allowed" otherwise.

This constitutes the frame-ancestors directive’s navigation response check:

This directive is similar to the X-Frame-Options header that several user agents have implemented.

Note: The frame-ancestors directive’s syntax is similar to a source list, but frame-ancestors

will not fall back to the default-src directive’s value if one is specified. That is, a policy that

declares default-src 'none' will still allow the resource to be embedded by anyone.

6.3.2.1. frame-ancestors Navigation Response Check

1. Assert: request, navigation response, navigation type, source, and policy are unused in this

algorithm, as frame-ancestors is concerned only with navigation response’s frame-ancestors

directive.

2. If check type is "source", return "Allowed".

Note: The 'frame-ancestors' directive is relevant only to the target browsing context and it has

no impact on the source browsing context.

3. If target is not a nested browsing context, return "Allowed".

4. Let current be target.

5. While current has a parent browsing context (parent):

1. Set current to parent.

2. Let origin be the result of executing the URL parser on the ASCII serialization of parent’s

active document’s relevant settings object’s origin.

3. If §6.6.2.5 Does url match source list in origin with redirect count? returns Does Not

Match when executed upon origin, this directive’s value, navigation response’s url’s origin,

and 0, return "Blocked".

6. Return "Allowed".

6.3.2.2. Relation to X-Frame-Options

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

70 of 113 16/01/2021, 17:19

The 'none' source expression is roughly equivalent to that header’s DENY, 'self' to SAMEORIGIN, and

so on. The major difference is that many user agents implement SAMEORIGIN such that it only matches

against the top-level document’s location, while the frame-ancestors directive checks against each

ancestor. If _any_ ancestor doesn’t match, the load is cancelled. [RFC7034]

In order to allow backwards-compatible deployment, the frame-ancestors directive _obsoletes_ the

X-Frame-Options header. If a resource is delivered with an policy that includes a directive named

frame-ancestors and whose disposition is "enforce", then the X-Frame-Options header MUST be

ignored.

The navigate-to directive restricts the URLs to which a document can initiate navigations by any

means (<a>, <form>, window.location, window.open, etc.). This is an enforcement on what

navigations this document initiates not on what this document is allowed to navigate to. If the form-

action directive is present, the navigate-to directive will not act on navigations that are form

submissions.

The directive’s syntax is described by the following ABNF grammar:

directive-name = "navigate-to"

directive-value = serialized-source-list

ISSUE 11 Spell this out in more detail as part of defining X-Frame-Options integration with the

process a navigate response algorithm. <https://github.com/whatwg/html/issues/1230>

6.3.3. navigate-to

EXAMPLE 18

A document initiator has the following Content-Security-Policy:

Content-Security-Policy: navigate-to example.com

A document target has the following Content-Security-Policy:

Content-Security-Policy: navigate-to not-example.com

If the initiator attempts to navigate the target to example.com, the navigation is allowed by the

navigate-to directive.

If the initiator attempts to navigate the target to not-example.com, the navigation is blocked by

the navigate-to directive.

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

71 of 113 16/01/2021, 17:19

Given a request (request), a string navigation type ("form-submission" or "other"), two browsing

contexts (source and target), and a policy (policy), this algorithm returns "Blocked" if the navigation

violates the navigate-to directive’s constraints, and "Allowed" otherwise. This constitutes the

navigate-to' directive’s pre-navigation check:

Given a request (request), a string navigation type ("form-submission" or "other"), a response

(navigation response) two browsing contexts (source and target), a string check type ("source" or

"response"), and a policy (policy), this algorithm returns "Blocked" if the navigation violates the

navigate-to directive’s constraints, and "Allowed" otherwise. This constitutes the navigate-to

directive’s navigation response check:

6.3.3.1. navigate-to Pre-Navigation Check

1. Assert: source and target are unused as 'navigate-to' is concerned with the details of the request.

2. If navigation type is "form-submission" and policy contains a directive named "form-action",

return "Allowed".

3. If this directive’s value contains a source expression that is an ASCII case-insensitive match for

the "'unsafe-allow-redirects'" keyword-source, return "Allowed".

Note: If the 'unsafe-allow-redirects' flag is present we have to wait for the response and take

into account the response’s status in §6.3.3.2 navigate-to Navigation Response Check.

4. If the result of executing §6.6.2.3 Does request match source list? on request and this directive’s

value is "Does Not Match", return "Blocked".

5. Return "Allowed".

6.3.3.2. navigate-to Navigation Response Check

1. Assert: source, and target are unused.

2. If check type is "response", return "Allowed".

Note: The 'navigate-to' directive is relevant only to the source browsing context and it has no

impact on the target browsing context.

3. If navigation type is "form-submission" and policy contains a directive named "form-action",

return "Allowed".

4. If this directive’s value does not contain a source expression that is an ASCII case-insensitive

match for the "'unsafe-allow-redirects'" keyword-source, return "Allowed".

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

72 of 113 16/01/2021, 17:19

Various algorithms in this document hook into the reporting process by constructing a violation object

via §2.4.2 Create a violation object for request, and policy. or §2.4.1 Create a violation object for

global, policy, and directive, and passing that object to §5.3 Report a violation to deliver the report.

The report-uri directive defines a set of endpoints to which violation reports will be sent when

particular behaviors are prevented.

directive-name = "report-uri"

directive-value = uri-reference *(required-ascii-whitespace uri-reference)

; The uri-reference grammar is defined in Section 4.1 of RFC 3986.

The directive has no effect in and of itself, but only gains meaning in combination with other

directives.

Note: If the 'unsafe-allow-redirects' flag is not present we have already checked the

navigation in §6.3.3.1 navigate-to Pre-Navigation Check.

5. If navigation response’s status is a redirect status, return "Allowed".

6. If the result of executing §6.6.2.3 Does request match source list? on request and this directive’s

value is "Does Not Match", return "Blocked".

7. Return "Allowed".

6.4. Reporting Directives

6.4.1. report-uri

Note: The report-uri directive is deprecated. Please use the report-to directive instead. If the

latter directive is present, this directive will be ignored. To ensure backwards compatibility, we

suggest specifying both, like this:

EXAMPLE 19

Content-Security-Policy: ...; report-uri https://endpoint.com; report-to groupname

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

73 of 113 16/01/2021, 17:19

The report-to directive defines a reporting group to which violation reports ought to be sent

[REPORTING]. The directive’s behavior is defined in §5.3 Report a violation. The directive’s name

and value are described by the following ABNF:

directive-name = "report-to"

directive-value = token

This document defines a core set of directives, and sets up a framework for modular extension by

other specifications. At the time this document was produced, the following stable documents extend

CSP:

Extensions to CSP MUST register themselves via the process outlined in [RFC7762]. In particular,

note the criteria discussed in Section 4.2 of that document.

New directives SHOULD use the pre-request check, post-request check, response check, and

initialization hooks in order to integrate themselves into Fetch and HTML.

Given a request (request) and a directive (directive):

6.4.2. report-to

6.5. Directives Defined in Other Documents

[MIX] defines block-all-mixed-content

[UPGRADE-INSECURE-REQUESTS] defines upgrade-insecure-requests

[SRI] defines require-sri-for

6.6. Matching Algorithms

6.6.1. Script directive checks

6.6.1.1. Script directives pre-request check

1. If request’s destination is script-like:

1. If the result of executing §6.6.2.2 Does nonce match source list? on request’s cryptographic

nonce metadata and this directive’s value is "Matches", return "Allowed".

2. Let integrity expressions be the set of source expressions in directive’s value that match the

hash-source grammar.

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

74 of 113 16/01/2021, 17:19

This directive’s post-request check is as follows:

Given a request (request), a response (response), and a directive (directive):

3. If integrity expressions is not empty:

1. Let integrity sources be the result of executing the algorithm defined in Subresource

Integrity §parse-metadata on request’s integrity metadata. [SRI]

2. If integrity sources is "no metadata" or an empty set, skip the remaining substeps.

3. Let bypass due to integrity match be true.

4. For each source in integrity sources:

1. If directive’s value does not contain a source expression whose hash-algorithm is a

case-sensitive match for source’s hash-algo component, and whose base64-value

is a case-sensitive match for source’s base64-value, then set bypass due to

integrity match to false.

5. If bypass due to integrity match is true, return "Allowed".

Note: Here, we verify only that the request contains a set of integrity metadata which is a

subset of the hash-source source expressions specified by directive. We rely on the

browser’s enforcement of Subresource Integrity [SRI] to block non-matching resources

upon response.

4. If directive’s value contains a source expression that is an ASCII case-insensitive match for

the "'strict-dynamic'" keyword-source:

1. If the request’s parser metadata is "parser-inserted", return "Blocked".

Otherwise, return "Allowed".

Note: "'strict-dynamic'" is explained in more detail in §8.2 Usage of "'strict-

dynamic'".

5. If the result of executing §6.6.2.3 Does request match source list? on request and directive’s

value is "Does Not Match", return "Blocked".

2. Return "Allowed".

6.6.1.2. Script directives post-request check

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

75 of 113 16/01/2021, 17:19

Given a request (request) and a policy (policy), this algorithm returns the violated directive if the

request violates the policy, and "Does Not Violate" otherwise.

Given a request’s cryptographic nonce metadata (nonce) and a source list (source list), this algorithm

returns "Matches" if the nonce matches one or more source expressions in the list, and "Does Not

Match" otherwise:

1. If request’s destination is script-like:

1. If the result of executing §6.6.2.2 Does nonce match source list? on request’s cryptographic

nonce metadata and this directive’s value is "Matches", return "Allowed".

2. If directive’s value contains "'strict-dynamic'", and request’s parser metadata is not

"parser-inserted", return "Allowed".

3. If the result of executing §6.6.2.4 Does response to request match source list? on response,

request, and directive’s value is "Does Not Match", return "Blocked".

2. Return "Allowed".

6.6.2. URL Matching

6.6.2.1. Does request violate policy?

1. Let violates be "Does Not Violate".

2. For each directive in policy:

1. Let result be the result of executing directive’s pre-request check on request and policy.

2. If result is "Blocked", then let violates be directive.

3. Return violates.

6.6.2.2. Does nonce match source list?

1. Assert: source list is not null.

2. If nonce is the empty string, return "Does Not Match".

3. For each expression in source list:

1. If expression matches the nonce-source grammar, and nonce is a case-sensitive match for

expression’s base64-value part, return "Matches".

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

76 of 113 16/01/2021, 17:19

Given a request (request), and a source list (source list), this algorithm returns the result of executing

§6.6.2.5 Does url match source list in origin with redirect count? on request’s current url, source list,

request’s origin, and request’s redirect count.

Given a request (request), and a source list (source list), this algorithm returns the result of executing

§6.6.2.5 Does url match source list in origin with redirect count? on response’s url, source list,

request’s origin, and request’s redirect count.

Given a URL (url), a source list (source list), an origin (origin), and a number (redirect count), this

algorithm returns "Matches" if the URL matches one or more source expressions in source list, or

"Does Not Match" otherwise:

4. Return "Does Not Match".

6.6.2.3. Does request match source list?

Note: This is generally used in directives' pre-request check algorithms to verify that a given

request is reasonable.

6.6.2.4. Does response to request match source list?

Note: This is generally used in directives' post-request check algorithms to verify that a given

response is reasonable.

6.6.2.5. Does url match source list in origin with redirect count?

1. Assert: source list is not null.

2. If source list is an empty list, return "Does Not Match".

3. If source list contains a single item which is an ASCII case-insensitive match for the string

"'none'", return "Does Not Match".

Note: An empty source list (that is, a directive without a value: script-src, as opposed to

script-src host1) is equivalent to a source list containing 'none', and will not match any

URL.

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

77 of 113 16/01/2021, 17:19

Given a URL (url), a source expression (expression), an origin (origin), and a number (redirect count),

this algorithm returns "Matches" if url matches expression, and "Does Not Match" otherwise.

4. For each expression in source list:

1. If §6.6.2.6 Does url match expression in origin with redirect count? returns "Matches" when

executed upon url, expression, origin, and redirect count, return "Matches".

5. Return "Does Not Match".

6.6.2.6. Does url match expression in origin with redirect count?

Note: origin is the origin of the resource relative to which the expression should be resolved.

"'self'", for instance, will have distinct meaning depending on that bit of context.

1. If expression is the string "*", return "Matches" if one or more of the following conditions is met:

1. url’s scheme is a network scheme.

2. url’s scheme is the same as origin’s scheme.

Note: This logic means that in order to allow a resource from a non-network scheme, it has to

be either explicitly specified (e.g. default-src * data: custom-scheme-1: custom-

scheme-2:), or the protected resource must be loaded from the same scheme.

2. If expression matches the scheme-source or host-source grammar:

1. If expression has a scheme-part, and it does not scheme-part match url’s scheme, return

"Does Not Match".

2. If expression matches the scheme-source grammar, return "Matches".

3. If expression matches the host-source grammar:

1. If url’s host is null, return "Does Not Match".

2. If expression does not have a scheme-part, and origin’s scheme does not scheme-part

match url’s scheme, return "Does Not Match".

Note: As with scheme-part above, we allow schemeless host-source expressions to be

upgraded from insecure schemes to secure schemes.

3. If expression’s host-part does not host-part match url’s host, return "Does Not

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

78 of 113 16/01/2021, 17:19

An ASCII string scheme-part matches another ASCII string if a CSP source expression that

contained the first as a scheme-part could potentially match a URL containing the latter as a scheme.

For example, we say that "http" scheme-part matches "https".

Match".

4. Let port-part be expression’s port-part if present, and null otherwise.

5. If port-part does not port-part match url’s port and url’s scheme, return "Does Not

Match".

6. If expression contains a non-empty path-part, and redirect count is 0, then:

1. Let path be the resulting of joining url’s path on the U+002F SOLIDUS character (/).

2. If expression’s path-part does not path-part match path, return "Does Not Match".

7. Return "Matches".

4. If expression is an ASCII case-insensitive match for "'self'", return "Matches" if one or more

of the following conditions is met:

1. origin is the same as url’s origin

2. origin’s host is the same as url’s host, origin’s port and url’s port are either the same or

the default ports for their respective schemes, and one or more of the following conditions is

met:

1. url’s scheme is "https" or "wss"

2. origin’s scheme is "http" and url’s scheme is "http" or "ws"

Note: Like the scheme-part logic above, the "'self'" matching algorithm allows upgrades

to secure schemes when it is safe to do so. We limit these upgrades to endpoints running on

the default port for a particular scheme or a port that matches the origin of the protected

resource, as this seems sufficient to deal with upgrades that can be reasonably expected to

succeed.

5. Return "Does Not Match".

6.6.2.7. scheme-part matching

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

79 of 113 16/01/2021, 17:19

More formally, two ASCII strings (A and B) are said to scheme-part match if the following algorithm

returns "Matches":

An ASCII string host-part matches another ASCII string if a CSP source expression that contained

the first as a host-part could potentially match a URL containing the latter as a host. For example,

we say that "www.example.com" host-part matches "www.example.com".

More formally, two ASCII strings (A and B) are said to host-part match if the following algorithm

returns "Matches":

Note: The matching relation is asymmetric. For example, the source expressions https: and

https://example.com/ do not match the URL http://example.com/. We always allow a secure

upgrade from an explicitly insecure expression. script-src http: is treated as equivalent to

script-src http: https:, script-src http://example.com to script-src

http://example.com https://example.com, and connect-src ws: to connect-src ws:

wss:.

1. If one of the following is true, return "Matches":

1. A is an ASCII case-insensitive match for B.

2. A is an ASCII case-insensitive match for "http", and B is an ASCII case-insensitive match

for "https".

3. A is an ASCII case-insensitive match for "ws", and B is an ASCII case-insensitive match

for "wss", "http", or "https".

4. A is an ASCII case-insensitive match for "wss", and B is an ASCII case-insensitive match

for "https".

2. Return "Does Not Match".

6.6.2.8. host-part matching

Note: The matching relation is asymmetric. That is, A matching B does not mean that B will match

A. For example, *.example.com host-part matches www.example.com, but www.example.com

does not host-part match *.example.com.

1. If the first character of A is an U+002A ASTERISK character (*):

1. Let remaining be the result of removing the leading ("*") from A.

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

80 of 113 16/01/2021, 17:19

An ASCII string (port A) port-part matches two other ASCII strings (port B and scheme B) if a CSP

source expression that contained the first as a port-part could potentially match a URL containing

the latter as port and scheme. For example, "80" port-part matches matches "80"/"http".

An ASCII string (path A) path-part matches another ASCII string (path B) if a CSP source

expression that contained the first as a path-part could potentially match a URL containing the latter

2. If remaining (including the leading U+002E FULL STOP character (.)) is an ASCII case-

insensitive match for the rightmost characters of B, then return "Matches". Otherwise,

return "Does Not Match".

2. If A is not an ASCII case-insensitive match for B, return "Does Not Match".

3. If A matches the IPv4address rule from [RFC3986], and is not "127.0.0.1"; or if A is an IPv6

address, return "Does Not Match".

Note: A future version of this specification may allow literal IPv6 and IPv4 addresses,

depending on usage and demand. Given the weak security properties of IP addresses in

relation to named hosts, however, authors are encouraged to prefer the latter whenever

possible.

4. Return "Matches".

6.6.2.9. port-part matching

1. If port A is empty:

1. If port B is the default port for scheme B, return "Matches". Otherwise, return "Does Not

Match".

2. If port A is equal to "*", return "Matches".

3. If port A is a case-sensitive match for port B, return "Matches".

4. If port B is empty:

1. If port A is the default port for scheme B, return "Matches". Otherwise, return "Does not

Match".

5. Return "Does Not Match".

6.6.2.10. path-part matching

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

81 of 113 16/01/2021, 17:19

as a path. For example, we say that "/subdirectory/" path-part matches "/subdirectory/file".

Given an Element (element), this algorithm returns "Nonceable" if a nonce-source expression can

match the element (as discussed in §7.2 Nonce Stealing), and "Not Nonceable" if such expressions

should not be applied.

Note: The matching relation is asymmetric. That is, path A matching path B does not mean that

path B will match path A.

1. If path A is empty, return "Matches".

2. If path A consists of one character that is equal to the U+002F SOLIDUS character (/) and path

B is empty, return "Matches".

3. Let exact match be false if the final character of path A is the U+002F SOLIDUS character (/),

and true otherwise.

4. Let path list A and path list B be the result of strictly splitting path A and path B respectively on

the U+002F SOLIDUS character (/).

5. If path list A has more items than path list B, return "Does Not Match".

6. If exact match is true, and path list A does not have the same number of items as path list B,

return "Does Not Match".

7. If exact match is false:

1. Assert: the final item in path list A is the empty string.

2. Remove the final item from path list A.

8. For each piece A in path list A:

1. Let piece B be the next item in path list B.

2. Percent decode piece A.

3. Percent decode piece B.

4. If piece A is not a case-sensitive match for piece B, return "Does Not Match".

9. Return "Matches".

6.6.3. Element Matching Algorithms

6.6.3.1. Is element nonceable?

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

82 of 113 16/01/2021, 17:19

A source list allows all inline behavior of a given type if it contains the keyword-source expression

'unsafe-inline', and does not override that expression as described in the following algorithm:

Given a source list (list) and a string (type), the following algorithm returns "Allows" if all inline

content of a given type is allowed and "Does Not Allow" otherwise.

1. If element does not have an attribute named "nonce", return "Not Nonceable".

2. If element is a <script> element, then for each attribute in element:

1. If attribute’s name is an ASCII case-insensitive match for the string "<script" or the string

"<style", return "Not Nonceable".

2. If attribute’s value contains an ASCII case-insensitive match the string "<script" or the

string "<style", return "Not Nonceable".

3. If element had a duplicate-attribute parse error during tokenization, return "Not Nonceable".

ISSUE 12 We need some sort of hook in HTML to record this error if we’re planning on

using it here. <https://github.com/whatwg/html/issues/3257>

4. Return "Nonceable".

ISSUE 13 This processing is meant to mitigate the risk of dangling markup attacks that steal the

nonce from an existing element in order to load injected script. It is fairly expensive, however, as it

requires that we walk through all attributes and their values in order to determine whether the

script should execute. Here, we try to minimize the impact by doing this check only for <script>

elements when a nonce is present, but we should probably consider this algorithm as "at risk" until

we know its impact. <https://github.com/w3c/webappsec-csp/issues/98>

6.6.3.2. Does a source list allow all inline behavior for type?

1. Let allow all inline be false.

2. For each expression in list:

1. If expression matches the nonce-source or hash-source grammar, return "Does Not

Allow".

2. If type is "script", "script attribute" or "navigation" and expression matches the

keyword-source "'strict-dynamic'", return "Does Not Allow".

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

83 of 113 16/01/2021, 17:19

Given an Element (element), a source list (list), a string (type), and a string (source), this algorithm

returns "Matches" or "Does Not Match".

Note: 'strict-dynamic' only applies to scripts, not other resource types. Usage is

explained in more detail in §8.2 Usage of "'strict-dynamic'".

3. If expression is an ASCII case-insensitive match for the keyword-source "'unsafe-

inline'", set allow all inline to true.

3. If allow all inline is true, return "Allows". Otherwise, return "Does Not Allow".

EXAMPLE 20

Source lists that allow all inline behavior:

'unsafe-inline' http://a.com http://b.com

'unsafe-inline'

Source lists that do not allow all inline behavior due to the presence of nonces and/or hashes, or

absence of 'unsafe-inline':

'sha512-321cba' 'nonce-abc'

http://example.com 'unsafe-inline' 'nonce-abc'

Source lists that do not allow all inline behavior when type is 'script' or 'script attribute' due

to the presence of 'strict-dynamic', but allow all inline behavior otherwise:

'unsafe-inline' 'strict-dynamic'

http://example.com 'strict-dynamic' 'unsafe-inline'

6.6.3.3. Does element match source list for type and source?

Note: Regardless of the encoding of the document, source will be converted to UTF-8 before

applying any hashing algorithms.

1. If §6.6.3.2 Does a source list allow all inline behavior for type? returns "Allows" given list and

type, return "Matches".

2. If type is "script" or "style", and §6.6.3.1 Is element nonceable? returns "Nonceable" when

executed upon element:

1. For each expression in list:

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

84 of 113 16/01/2021, 17:19

1. If expression matches the nonce-source grammar, and element has a nonce attribute

whose value is a case-sensitive match for expression’s base64-value part, return

"Matches".

Note: Nonces only apply to inline <script> and inline <style>, not to attributes of either

element or to javascript: navigations.

3. Let unsafe-hashes flag be false.

4. For each expression in list:

1. If expression is an ASCII case-insensitive match for the keyword-source "'unsafe-

hashes'", set unsafe-hashes flag to true. Break out of the loop.

5. If type is "script" or "style", or unsafe-hashes flag is true:

1. Set source to the result of executing UTF-8 encode on the result of executing JavaScript

string converting on source.

2. For each expression in list:

1. If expression matches the hash-source grammar:

1. Let algorithm be null.

2. If expression’s hash-algorithm part is an ASCII case-insensitive match for

"sha256", set algorithm to SHA-256.

3. If expression’s hash-algorithm part is an ASCII case-insensitive match for

"sha384", set algorithm to SHA-384.

4. If expression’s hash-algorithm part is an ASCII case-insensitive match for

"sha512", set algorithm to SHA-512.

5. If algorithm is not null:

1. Let actual be the result of base64 encoding the result of applying algorithm

to source.

2. Let expected be expression’s base64-value part, with all '-' characters

replaced with '+', and all '_' characters replaced with '/'.

Note: This replacement normalizes hashes expressed in base64url

encoding into base64 encoding for matching.

3. If actual is a case-sensitive match for expected, return "Matches".

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

85 of 113 16/01/2021, 17:19

Each fetch directive controls a specific destination of request. Given a request (request), the following

algorithm returns either null or the name of the request’s effective directive:

Note: Hashes apply to inline <script> and inline <style>. If the "'unsafe-hashes'" source

expression is present, they will also apply to event handlers, style attributes and javascript:

navigations.

6. Return "Does Not Match".

6.7. Directive Algorithms

6.7.1. Get the effective directive for request

1. If request’s initiator is "fetch" or its destination is "", return connect-src.

2. If request’s initiator is "prefetch" or "prerender", return prefetch-src.

3. Switch on request’s destination, and execute the associated steps:

"manifest"

1. Return manifest-src.

"object"
"embed"

1. Return object-src.

"document"

1. If the request’s target browsing context is a nested browsing context, return frame-src.

"audio"
"track"
"video"

1. Return media-src.

"font"

1. Return font-src.

"image"

1. Return img-src.

"style"

1. Return style-src-elem.

"script"
"xslt"

1. Return script-src-elem.

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

86 of 113 16/01/2021, 17:19

Given a string (type), this algorithm returns the name of the effective directive.

Will return an ordered set of the fallback directives for a specific directive. The returned ordered set is

sorted from most relevant to least relevant and it includes the effective directive itself.

Given a string (directive name):

"serviceworker"
"sharedworker"
"worker"

1. Return worker-src.

4. Return null.

6.7.2. Get the effective directive for inline checks

Note: While the effective directive is only defined for requests, in this algorithm it is used

similarly to mean the directive that is most relevant to a particular type of inline check.

1. Switch on type:

"script"
"navigation"

1. Return script-src-elem.

"script attribute"

1. Return script-src-attr.

"style"

1. Return style-src-elem.

"style attribute"

1. Return style-src-attr.

2. Return null.

6.7.3. Get fetch directive fallback list

1. Switch on directive name:

"script-src-elem"

1. Return << "script-src-elem", "script-src", "default-src" >>.

"script-src-attr"

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

87 of 113 16/01/2021, 17:19

This algorithm is used for fetch directives to decide whether a directive should execute or defer to a

different directive that is better suited. For example: if the effective directive name is worker-src

(meaning that we are currently checking a worker request), a default-src directive should not

execute if a worker-src or script-src directive exists.

Given a string (effective directive name), a string (directive name) and a policy (policy):

1. Return << "script-src-attr", "script-src", "default-src" >>.

"style-src-elem"

1. Return << "style-src-elem", "style-src", "default-src" >>.

"style-src-attr"

1. Return << "style-src-attr", "style-src", "default-src" >>.

"worker-src"

1. Return << "worker-src", "child-src", "script-src", "default-src" >>.

"connect-src"

1. Return << "connect-src", "default-src" >>.

"manifest-src"

1. Return << "manifest-src", "default-src" >>.

"prefetch-src"

1. Return << "prefetch-src", "default-src" >>.

"object-src"

1. Return << "object-src", "default-src" >>.

"frame-src"

1. Return << "frame-src", "child-src", "default-src" >>.

"media-src"

1. Return << "media-src", "default-src" >>.

"font-src"

1. Return << "font-src", "default-src" >>.

"image-src"

1. Return << "image-src", "default-src" >>.

2. Return << >>.

6.7.4. Should fetch directive execute

1. Let directive fallback list be the result of executing §6.7.3 Get fetch directive fallback list on

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

88 of 113 16/01/2021, 17:19

Nonces override the other restrictions present in the directive in which they’re delivered. It is critical,

then, that they remain unguessable, as bypassing a resource’s policy is otherwise trivial.

If a server delivers a nonce-source expression as part of a policy, the server MUST generate a unique

value each time it transmits a policy. The generated value SHOULD be at least 128 bits long (before

encoding), and SHOULD be generated via a cryptographically secure random number generator in

order to ensure that the value is difficult for an attacker to predict.

Dangling markup attacks such as those discussed in [FILEDESCRIPTOR-2015] can be used to

repurpose a page’s legitimate nonces for injections. For example, given an injection point before a

<script> element:

<p>Hello, [INJECTION POINT]</p>

<script nonce=abc src=/good.js></script>

If an attacker injects the string "<script src='https://evil.com/evil.js' ", then the browser

effective directive name.

2. For each fallback directive in directive fallback list:

1. If directive name is fallback directive, Return "Yes".

2. If policy contains a directive whose name is fallback directive, Return "No".

3. Return "No".

7. Security and Privacy Considerations

7.1. Nonce Reuse

Note: Using a nonce to allow inline script or style is less secure than not using a nonce, as nonces

override the restrictions in the directive in which they are present. An attacker who can gain access

to the nonce can execute whatever script they like, whenever they like. That said, nonces provide a

substantial improvement over 'unsafe-inline' when layering a content security policy on top of old

code. When considering 'unsafe-inline', authors are encouraged to consider nonces (or hashes)

instead.

7.2. Nonce Stealing

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

89 of 113 16/01/2021, 17:19

will receive the following:

<p>Hello, <script src='https://evil.com/evil.js' </p>

<script nonce=abc src=/good.js></script>

It will then parse that code, ending up with a <script> element with a src attribute pointing to a

malicious payload, an attribute named </p>, an attribute named "<script", a nonce attribute, and a

second src attribute which is helpfully discarded as duplicate by the parser.

The §6.6.3.1 Is element nonceable? algorithm attempts to mitigate this specific attack by walking

through <script> or <style> element attributes, looking for the string "<script" or "<style" in their

names or values.

Nonces bypass host-source expressions, enabling developers to load code from any origin. This,

generally, is fine, and desirable from the developer’s perspective. However, if an attacker can inject a

<base> element, then an otherwise safe page can be subverted when relative URLs are resolved. That

is, on https://example.com/ the following code will load https://example.com/good.js:

<script nonce=abc src=/good.js></script>

However, the following will load https://evil.com/good.js:

<base href="https://evil.com">

<script nonce=abc src=/good.js></script>

To mitigate this risk, it is advisable to set an explicit <base> element on every page, or to limit the

ability of an attacker to inject their own <base> element by setting a base-uri directive in your page’s

policy. For example, base-uri 'none'.

The style-src directive restricts the locations from which the protected resource can load styles.

However, if the user agent uses a lax CSS parsing algorithm, an attacker might be able to trick the user

agent into accepting malicious "stylesheets" hosted by an otherwise trustworthy origin.

7.3. Nonce Retargeting

7.4. CSS Parsing

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

90 of 113 16/01/2021, 17:19

These attacks are similar to the CSS cross-origin data leakage attack described by Chris Evans in 2009

[CSS-ABUSE]. User agents SHOULD defend against both attacks using the same mechanism: stricter

CSS parsing rules for style sheets with improper MIME types.

The violation reporting mechanism in this document has been designed to mitigate the risk that a

malicious web site could use violation reports to probe the behavior of other servers. For example,

consider a malicious web site that allows https://example.com as a source of images. If the

malicious site attempts to load https://example.com/login as an image, and the example.com

server redirects to an identity provider (e.g. identityprovider.example.net), CSP will block the

request. If violation reports contained the full blocked URL, the violation report might contain

sensitive information contained in the redirected URL, such as session identifiers or purported

identities. For this reason, the user agent includes only the URL of the original request, not the redirect

target.

Note also that violation reports should be considered attacker-controlled data. Developers who wish to

collect violation reports in a dashboard or similar service should be careful to properly escape their

content before rendering it (and should probably themselves use CSP to further mitigate the risk of

injection). This is especially true for the "script-sample" property of violation reports, and the

sample property of SecurityPolicyViolationEvent, which are both completely attacker-

controlled strings.

To avoid leaking path information cross-origin (as discussed in Egor Homakov’s Using Content-

Security-Policy for Evil), the matching algorithm ignores the path component of a source expression if

the resource being loaded is the result of a redirect. For example, given a page with an active policy of

img-src example.com example.org/path:

This restriction reduces the granularity of a document’s policy when redirects are in play, a necessary

7.5. Violation Reports

7.6. Paths and Redirects

Directly loading https://example.org/not-path would fail, as it doesn’t match the policy.

Directly loading https://example.com/redirector would pass, as it matches example.com.

Assuming that https://example.com/redirector delivered a redirect response pointing to

https://example.org/not-path, the load would succeed, as the initial URL matches

example.com, and the redirect target matches example.org/path if we ignore its path

component.

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

91 of 113 16/01/2021, 17:19

compromise to avoid brute-forced information leaks of this type.

The relatively long thread "Remove paths from CSP?" from public-webappsec@w3.org has more

detailed discussion around alternate proposals.

To mitigate one variant of history-scanning attacks like Yan Zhu’s Sniffly࠹࠸࠷࠶, CSP will not allow

pages to lock themselves into insecure URLs via policies like script-src http://example.com. As

described in §6.6.2.7 scheme-part matching, the scheme portion of a source expression will always

allow upgrading to a secure variant.

As described in §4.2.1 Initialize a Document's CSP list and §4.2.2 Initialize a global object’s CSP list,

documents loaded from local schemes will inherit a copy of the policies in the CSP list of the

embedding document or opener browsing context. The goal is to ensure that a page can’t bypass its

policy by embedding a frame or opening a new window containing content that is entirely under its

control (srcdoc documents, blob: or data: URLs, about:blank documents that can be manipulated

via document.write(), etc).

Note that we create a copy of the CSP list which means that the new Document's CSP list is a

snapshot of the relevant policies at its creation time. Modifications in the CSP list of the new

Document won’t affect the embedding document or opener browsing context’s CSP list or vice-versa.

7.7. Secure Upgrades

7.8. CSP Inheriting to avoid bypasses

EXAMPLE 21

If this would not happen a page could execute inline scripts even without unsafe-inline in the

page’s execution context by simply embedding a srcdoc iframe.

<iframe srcdoc="<script>alert(1);</script>"></iframe>

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

92 of 113 16/01/2021, 17:19

This section is not normative.

The above sections note that when multiple policies are present, each must be enforced or reported,

according to its type. An example will help clarify how that ought to work in practice. The behavior of

an XMLHttpRequest might seem unclear given a site that, for whatever reason, delivered the following

HTTP headers:

Is a connection to example.com allowed or not? The short answer is that the connection is not

allowed. Enforcing both policies means that a potential connection would have to pass through both

unscathed. Even though the second policy would allow this connection, the first policy contains

connect-src 'none', so its enforcement blocks the connection. The impact is that adding additional

policies to the list of policies to enforce can only further restrict the capabilities of the protected

resource.

To demonstrate that further, consider a script tag on this page. The first policy would lock scripts

down to 'self', http://example.com and http://example.net via the default-src directive. The

second, however, would only allow script from http://example.com/. Script will only load if it

EXAMPLE 22

In the example below the image inside the iframe will not load because it is blocked by the policy

in the meta tag of the iframe. The image outside the iframe will load (assuming the main page

policy does not block it) since the policy inserted in the iframe will not affect it.

<iframe srcdoc='<meta http-equiv="Content-Security-Policy" content="img-src example.com;">

 '></iframe>

8. Authoring Considerations

8.1. The effect of multiple policies

EXAMPLE 23

Content-Security-Policy: default-src 'self' http://example.com http://example.net;

 connect-src 'none';

Content-Security-Policy: connect-src http://example.com/;

 script-src http://example.com/

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

93 of 113 16/01/2021, 17:19

meets both policy’s criteria: in this case, the only origin that can match is http://example.com, as

both policies allow it.

Host- and path-based policies are tough to get right, especially on sprawling origins like CDNs. The

solutions to Cure53’s H5SC Minichallenge 3: "Sh*t, it’s CSP!" [H5SC3] are good examples of the

kinds of bypasses which such policies can enable, and though CSP is capable of mitigating these

bypasses via exhaustive declaration of specific resources, those lists end up being brittle, awkward,

and difficult to implement and maintain.

The "'strict-dynamic'" source expression aims to make Content Security Policy simpler to deploy

for existing applications who have a high degree of confidence in the scripts they load directly, but

low confidence in their ability to provide a reasonable list of resources to load up front.

If present in a script-src or default-src directive, it has two main effects:

The first change allows you to deploy "'strict-dynamic' in a backwards compatible way, without

requiring user-agent sniffing: the policy 'unsafe-inline' https: 'nonce-abcdefg' 'strict-

dynamic' will act like 'unsafe-inline' https: in browsers that support CSP1, https: 'nonce-

DhcnhD3khTMePgXwdayK9BsMqXjhguVV' in browsers that support CSP2, and 'nonce-

DhcnhD3khTMePgXwdayK9BsMqXjhguVV' 'strict-dynamic' in browsers that support CSP3.

The second allows scripts which are given access to the page via nonces or hashes to bring in their

dependencies without adding them explicitly to the page’s policy.

8.2. Usage of "'strict-dynamic'"

1. host-source and scheme-source expressions, as well as the "'unsafe-inline'" and "'self'

keyword-sources will be ignored when loading script.

hash-source and nonce-source expressions will be honored.

2. Script requests which are triggered by non-"parser-inserted" <script> elements are allowed.

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

94 of 113 16/01/2021, 17:19

This section is not normative.

Legacy websites and websites with legacy dependencies might find it difficult to entirely externalize

event handlers. These sites could enable such handlers by allowing 'unsafe-inline', but that’s a big

hammer with a lot of associated risk (and cannot be used in conjunction with nonces or hashes).

The "'unsafe-hashes'" source expression aims to make CSP deployment simpler and safer in these

situations by allowing developers to enable specific handlers via hashes.

EXAMPLE 24

Suppose MegaCorp, Inc. deploys the following policy:

Content-Security-Policy: script-src 'nonce-DhcnhD3khTMePgXwdayK9BsMqXjhguVV' 'strict-dynamic'

And serves the following HTML with that policy active:

...

<script src="https://cdn.example.com/script.js" nonce="DhcnhD3khTMePgXwdayK9BsMqXjhguVV"

...

This will generate a request for https://cdn.example.com/script.js, which will not be

blocked because of the matching nonce attribute.

If script.js contains the following code:

var s = document.createElement('script');

s.src = 'https://othercdn.not-example.net/dependency.js';

document.head.appendChild(s);

document.write('<scr' + 'ipt src="/sadness.js"></scr' + 'ipt>');

dependency.js will load, as the <script> element created by createElement() is not "parser-

inserted".

sadness.js will not load, however, as document.write() produces <script> elements which are

"parser-inserted".

8.3. Usage of "'unsafe-hashes'"

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

95 of 113 16/01/2021, 17:19

The capabilities 'unsafe-hashes' provides is useful for legacy sites, but should be avoided for

modern sites. In particular, note that hashes allow a particular script to execute, but do not ensure that

it executes in the way a developer intends. If an interesting capability is exposed as an inline event

handler (say Transfer), then that script becomes

available for an attacker to inject as <script>transferAllMyMoney()</script>. Developers should

be careful to balance the risk of allowing specific scripts to execute against the deployment advantages

that allowing inline event handlers might provide.

In [CSP2], hash source expressions could only match inlined script, but now that Subresource

Integrity [SRI] is widely deployed, we can expand the scope to enable externalized JavaScript as well.

If multiple sets of integrity metadata are specified for a <script>, the request will match a policy’s

hash-sources if and only if each item in a <script>'s integrity metadata matches the policy.

EXAMPLE 25

MegaCorp, Inc. can’t quite get rid of the following HTML on anything resembling a reasonable

schedule:

<button id="action" onclick="doSubmit()">

Rather than reducing security by specifying "'unsafe-inline'", they decide to use "'unsafe-

hashes'" along with a hash source expression, as follows:

Content-Security-Policy: script-src 'unsafe-hashes' 'sha256-jzgBGA4UWFFmpOBq0JpdsySukE1FrEN5bUpoK8

8.4. Allowing external JavaScript via hashes

Note: The CSP spec specifies that the contents of an inline <script> element or event handler

needs to be encoded using UTF-8 encode before computing its hash. [SRI] computes the hash on

the raw resource that is being fetched instead. This means that it is possible for the hash needed to

whitelist an inline script block to be different that the hash needed to whitelist an external script

even if they have identical contents.

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

96 of 113 16/01/2021, 17:19

Policy enforced on a resource SHOULD NOT interfere with the operation of user-agent features like

addons, extensions, or bookmarklets. These kinds of features generally advance the user’s priority

over page authors, as espoused in [HTML-DESIGN].

EXAMPLE 26

MegaCorp, Inc. wishes to allow two specific scripts on a page in a way that ensures that the

content matches their expectations. They do so by setting the following policy:

Content-Security-Policy: script-src 'sha256-abc123' 'sha512-321cba'

In the presence of that policy, the following <script> elements would be allowed to execute

because they contain only integrity metadata that matches the policy:

<script integrity="sha256-abc123" ...></script>

<script integrity="sha512-321cba" ...></script>

<script integrity="sha256-abc123 sha512-321cba" ...></script>

While the following <script> elements would not execute because they contain valid metadata

that does not match the policy (even though other metadata does match):

<script integrity="sha384-xyz789" ...></script>

<script integrity="sha384-xyz789 sha512-321cba" ...></script>

<script integrity="sha256-abc123 sha384-xyz789 sha512-321cba" ...></script>

Metadata that is not recognized (either because it’s entirely invalid, or because it specifies a not-

yet-supported hashing algorithm) does not affect the behavior described here. That is, the

following elements would be allowed to execute in the presence of the above policy, as the

additional metadata is invalid and therefore wouldn’t allow a script whose content wasn’t listed

explicitly in the policy to execute:

<script integrity="sha256-abc123 sha1024-abcd" ...></script>

<script integrity="sha512-321cba entirely-invalid" ...></script>

<script integrity="sha256-abc123 not-a-hash-at-all sha512-321cba" ...></script>

9. Implementation Considerations

9.1. Vendor-specific Extensions and Addons

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

97 of 113 16/01/2021, 17:19

Moreover, applying CSP to these kinds of features produces a substantial amount of noise in violation

reports, significantly reducing their value to developers.

Chrome, for example, excludes the chrome-extension: scheme from CSP checks, and does some

work to ensure that extension-driven injections are allowed, regardless of a page’s policy.

The Content Security Policy Directive registry should be updated with the following directives and

references [RFC7762]:

This document (see §6.2.1 base-uri)

This document (see §6.1.1 child-src)

This document (see §6.1.2 connect-src)

This document (see §6.1.3 default-src)

This document (see §6.1.4 font-src)

This document (see §6.3.1 form-action)

This document (see §6.3.2 frame-ancestors)

This document (see §6.1.5 frame-src)

This document (see §6.1.6 img-src)

This document (see §6.1.7 manifest-src)

This document (see §6.1.8 media-src)

This document (see §6.1.10 object-src)

10. IANA Considerations

10.1. Directive Registry

base-uri

child-src

connect-src

default-src

font-src

form-action

frame-ancestors

frame-src

img-src

manifest-src

media-src

object-src

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

98 of 113 16/01/2021, 17:19

This document (see §6.2.2 plugin-types)

This document (see §6.4.1 report-uri)

This document (see §6.4.2 report-to)

This document (see §6.2.3 sandbox)

This document (see §6.1.11 script-src)

This document (see §6.1.13 script-src-attr)

This document (see §6.1.12 script-src-elem)

This document (see §6.1.14 style-src)

This document (see §6.1.16 style-src-attr)

This document (see §6.1.15 style-src-elem)

This document (see §6.1.17 worker-src)

The permanent message header field registry should be updated with the following registrations:

[RFC3864]

Content-Security-Policy

http

standard

plugin-types

report-uri

report-to

sandbox

script-src

script-src-attr

script-src-elem

style-src

style-src-attr

style-src-elem

worker-src

10.2. Headers

10.2.1. Content-Security-Policy

Header field name

Applicable protocol

Status

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

99 of 113 16/01/2021, 17:19

W3C

This specification (See §3.1 The Content-Security-Policy HTTP Response Header Field)

Content-Security-Policy-Report-Only

http

standard

W3C

This specification (See §3.2 The Content-Security-Policy-Report-Only HTTP Response Header

Field)

Lots of people are awesome. For instance:

Conformance requirements are expressed with a combination of descriptive assertions and RFC 2119

terminology. The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”,

“SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in the normative

parts of this document are to be interpreted as described in RFC 2119. However, for readability, these

words do not appear in all uppercase letters in this specification.

Author/Change controller

Specification document

10.2.2. Content-Security-Policy-Report-Only

Header field name

Applicable protocol

Status

Author/Change controller

Specification document

11. Acknowledgements

Mario and all of Cure53.

Artur Janc, Michele Spagnuolo, Lukas Weichselbaum, Jochen Eisinger, and the rest of Google’s

CSP Cabal.

Conformance

Document conventions

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

100 of 113 16/01/2021, 17:19

All of the text of this specification is normative except sections explicitly marked as non-normative,

examples, and notes. [RFC2119]

Examples in this specification are introduced with the words “for example” or are set apart from the

normative text with class="example", like this:

Informative notes begin with the word “Note” and are set apart from the normative text with

class="note", like this:

Requirements phrased in the imperative as part of algorithms (such as "strip any leading space

characters" or "return false and abort these steps") are to be interpreted with the meaning of the key

word ("must", "should", "may", etc) used in introducing the algorithm.

Conformance requirements phrased as algorithms or specific steps can be implemented in any manner,

so long as the end result is equivalent. In particular, the algorithms defined in this specification are

intended to be easy to understand and are not intended to be performant. Implementers are encouraged

to optimize.

EXAMPLE 27

This is an example of an informative example.

Note, this is an informative note.

Conformant Algorithms

Index

Terms defined by this specification

allow all inline behavior, in §6.6.3.2

allows all inline behavior, in §6.6.3.2

ancestor-source, in §6.3.2

ancestor-source-list, in §6.3.2

base64-value, in §2.3.1

base-uri, in §6.2.1

blockedURI

attribute for SecurityPolicyViolationEvent, in

§5.1

dict-member for

SecurityPolicyViolationEventInit, in §5.1

child-src, in §6.1.1

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

101 of 113 16/01/2021, 17:19

column number, in §2.4

columnNumber

attribute for SecurityPolicyViolationEvent, in

§5.1

dict-member for

SecurityPolicyViolationEventInit, in §5.1

connect-src, in §6.1.2

contains a header-delivered Content Security

Policy, in §2.2

Content-Security-Policy, in §3.1

Content Security Policy, in §1

content security policy object, in §2.2

Content-Security-Policy-Report-Only, in §3.2

CSP list

definition of, in §2.2

dfn for global object, in §4.2

default-src, in §6.1.3

directive-name, in §2.3

directives, in §2.3

directive set, in §2.2

directive-value, in §2.3

disposition

attribute for SecurityPolicyViolationEvent, in

§5.1

dfn for policy, in §2.2

dfn for violation, in §2.4

dict-member for

SecurityPolicyViolationEventInit, in §5.1

documentURI

attribute for SecurityPolicyViolationEvent, in

§5.1

dict-member for

SecurityPolicyViolationEventInit, in §5.1

effectiveDirective

attribute for SecurityPolicyViolationEvent, in

§5.1

dict-member for

SecurityPolicyViolationEventInit, in §5.1

effective directive

dfn for request, in §6.7.1

dfn for violation, in §2.4

element, in §2.4

embedding document, in §4.2

"enforce", in §5.1

enforced, in §4.2

EnsureCSPDoesNotBlockStringCompilation(c

allerRealm, calleeRealm, source), in §4.3

Fetch directives, in §6.1

font-src, in §6.1.4

form-action, in §6.3.1

frame-ancestors, in §6.3.2

frame-src, in §6.1.5

global object, in §2.4

hash-algorithm, in §2.3.1

hash-source, in §2.3.1

host-char, in §2.3.1

host-part, in §2.3.1

host-part match, in §6.6.2.8

host-source, in §2.3.1

img-src, in §6.1.6

initialization, in §2.3

inline check, in §2.3

keyword-source, in §2.3.1

line number, in §2.4

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

102 of 113 16/01/2021, 17:19

lineNumber

attribute for SecurityPolicyViolationEvent, in

§5.1

dict-member for

SecurityPolicyViolationEventInit, in §5.1

manifest-src, in §6.1.7

media-src, in §6.1.8

media-type, in §6.2.2

media-type-list, in §6.2.2

monitored, in §4.2

name, in §2.3

navigate-to, in §6.3.3

navigation response check, in §2.3

nonce-source, in §2.3.1

'none', in §2.3.1

object-src, in §6.1.10

optional-ascii-whitespace, in §2.1

originalPolicy

attribute for SecurityPolicyViolationEvent, in

§5.1

dict-member for

SecurityPolicyViolationEventInit, in §5.1

parse a serialized CSP, in §2.2.1

parse a serialized CSP list, in §2.2.2

path-part, in §2.3.1

path-part match, in §6.6.2.10

plugin-types, in §6.2.2

plugin-types Post-Request Check, in §6.2.2

policy

definition of, in §2.2

dfn for violation, in §2.4

port-part, in §2.3.1

port-part matches, in §6.6.2.9

post-request check, in §2.3

prefetch-src, in §6.1.9

pre-navigation check, in §2.3

pre-request check, in §2.3

referrer

attribute for SecurityPolicyViolationEvent, in

§5.1

dfn for violation, in §2.4

dict-member for

SecurityPolicyViolationEventInit, in §5.1

"report", in §5.1

'report-sample', in §2.3.1

report-to, in §6.4.2

report-uri, in §6.4.1

required-ascii-whitespace, in §2.1

resource, in §2.4

response check, in §2.3

sample

attribute for SecurityPolicyViolationEvent, in

§5.1

dfn for violation, in §2.4

dict-member for

SecurityPolicyViolationEventInit, in §5.1

sandbox, in §6.2.3

scheme-part, in §2.3.1

scheme-part match, in §6.6.2.7

scheme-source, in §2.3.1

script-src, in §6.1.11

script-src-attr, in §6.1.13

script-src-elem, in §6.1.12

SecurityPolicyViolationEvent, in §5.1

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

103 of 113 16/01/2021, 17:19

SecurityPolicyViolationEventDisposition, in

§5.1

SecurityPolicyViolationEventInit, in §5.1

SecurityPolicyViolationEvent(type), in §5.1

SecurityPolicyViolationEvent(type,

eventInitDict), in §5.1

'self', in §2.3.1

serialized CSP, in §2.2

serialized CSP list, in §2.2

serialized directive, in §2.3

serialized-directive, in §2.3

serialized-policy, in §2.2

serialized-policy-list, in §2.2

serialized source list, in §2.3.1

serialized-source-list, in §2.3.1

Should plugin element be blocked a priori by

Content Security Policy?:, in §6.2.2.1

source, in §2.2

source-expression, in §2.3.1

source expression, in §2.3.1

source file, in §2.4

sourceFile

attribute for SecurityPolicyViolationEvent, in

§5.1

dict-member for

SecurityPolicyViolationEventInit, in §5.1

source lists, in §2.3.1

status, in §2.4

statusCode

attribute for SecurityPolicyViolationEvent, in

§5.1

dict-member for

SecurityPolicyViolationEventInit, in §5.1

'strict-dynamic', in §2.3.1

style-src, in §6.1.14

style-src-attr, in §6.1.16

style-src-elem, in §6.1.15

'unsafe-allow-redirects', in §2.3.1

'unsafe-eval', in §2.3.1

'unsafe-hashes', in §2.3.1

'unsafe-inline', in §2.3.1

url, in §2.4

value, in §2.3

violatedDirective

attribute for SecurityPolicyViolationEvent, in

§5.1

dict-member for

SecurityPolicyViolationEventInit, in §5.1

violation, in §2.4

violation report, in §5

worker-src, in §6.1.17

Terms defined by reference

[csp-3] defines the following terms:

content-security-policy

parse a serialized csp

[css-cascade-4] defines the following terms:

@import

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

104 of 113 16/01/2021, 17:19

[CSSOM] defines the following terms:

insert a css rule

parse a css declaration block

parse a css rule

parse a group of selectors

[DOM] defines the following terms:

Document

Element

Event

EventInit

bubbles

composed

connected

document

fire an event

node document

shadow-including root

target

[ECMA262] defines the following terms:

Function()

HostEnsureCanCompileStrings()

JSON.stringify()

eval()

realm

[ENCODING] defines the following terms:

utf-8 encode

[FETCH] defines the following terms:

body

client

credentials mode

cryptographic nonce metadata

csp list

current url

destination

extract a mime type

extracting header list values

fetch

header list (for response)

http fetch

http-network fetch

initiator

integrity metadata

keepalive flag

local scheme

main fetch

method

mode

network error

network scheme

origin

parser metadata

redirect count

redirect mode

redirect status

request

response

script-like

status

target browsing context

url (for response)

window

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

105 of 113 16/01/2021, 17:19

[HTML] defines the following terms:

"parser-inserted"

DedicatedWorkerGlobalScope

SharedWorker

SharedWorkerGlobalScope

Window

Worker

WorkerGlobalScope

a

active document

an iframe srcdoc document

applet

ascii serialization of an origin

associated document

base

browsing context

case-sensitive

content

content security policy state

csp list

current settings object

data

document

duplicate-attribute

embed

fallback base url

forced sandboxing flag set

form

frame

global object (for environment settings object)

href

http-equiv

iframe

initializing a new document object

link

meta

nested browsing context

nested through

nonce

object

opener browsing context

origin (for environment settings object)

owner set

parent browsing context

parse a sandboxing directive

parse error

ping

plugin document

prepare a script

process a navigate fetch

process a navigate response

queue a task

referrer

relevant global object

relevant settings object

run a worker

sandbox

sandboxed origin browsing context flag

sandboxed scripts browsing context flag

scheme

script

set the frozen base url

setInterval()

setTimeout()

style

top-level browsing context

type

update a style block

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

106 of 113 16/01/2021, 17:19

[INFRA] defines the following terms:

append (for set)

ascii case-insensitive

ascii lowercase

ascii string

ascii whitespace

collecting a sequence of code points

contain

continue

convert

infra

is empty

list

ordered set

set

split a string on ascii whitespace

split a string on commas

strictly split a string

string

strip leading and trailing ascii whitespace

[MIMESNIFF] defines the following terms:

valid mime type

[REPORTING] defines the following terms:

group

queue report

[rfc2045] defines the following terms:

subtype

type

[RFC3986] defines the following terms:

ipv4address

path-absolute

scheme

uri-reference

[rfc4648] defines the following terms:

base64 encoding

base64url encoding

[RFC5234] defines the following terms:

alpha

digit

vchar

[RFC7230] defines the following terms:

ows

token

[rfc7231] defines the following terms:

representation

resource representation

[service-workers-1] defines the following

terms:

ServiceWorker

ServiceWorkerGlobalScope

[sha2] defines the following terms:

sha-256

sha-384

sha-512

[URL] defines the following terms:

URL

base url

default port

host (for url)

ipv6 address

origin

path

percent decode

port (for url)

scheme

url parser

url serializer

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

107 of 113 16/01/2021, 17:19

Content Security Policy Level 3 URL: https://www.w3.org/TR/CSP3/

Elika Etemad; Tab Atkins Jr.. CSS Cascading and Inheritance Level 4. 28 August 2018. CR.

URL: https://www.w3.org/TR/css-cascade-4/

Simon Pieters; Glenn Adams. CSS Object Model (CSSOM). 17 March 2016. WD. URL:

https://www.w3.org/TR/cssom-1/

Anne van Kesteren. DOM Standard. Living Standard. URL: https://dom.spec.whatwg.org/

Brian Terlson; Allen Wirfs-Brock. ECMAScript® Language Specification. URL:

https://tc39.github.io/ecma262/

Anne van Kesteren. Encoding Standard. Living Standard. URL:

https://encoding.spec.whatwg.org/

Anne van Kesteren. Fetch Standard. Living Standard. URL: https://fetch.spec.whatwg.org/

Anne van Kesteren; et al. HTML Standard. Living Standard. URL: https://html.spec.whatwg.org

/multipage/

Anne van Kesteren; Domenic Denicola. Infra Standard. Living Standard. URL:

https://infra.spec.whatwg.org/

Gordon P. Hemsley. MIME Sniffing Standard. Living Standard. URL:

https://mimesniff.spec.whatwg.org/

[WebIDL] defines the following terms:

DOMString

Exposed

USVString

unsigned long

unsigned short

[worklets-1] defines the following terms:

WorkletGlobalScope

owner document

References

Normative References

[CSP-3]

[CSS-CASCADE-4]

[CSSOM]

[DOM]

[ECMA262]

[ENCODING]

[FETCH]

[HTML]

[INFRA]

[MIMESNIFF]

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

108 of 113 16/01/2021, 17:19

Ilya Gregorik; Mike West. Reporting API. URL: https://wicg.github.io/reporting/

N. Freed; N. Borenstein. Multipurpose Internet Mail Extensions (MIME) Part One: Format of

Internet Message Bodies. November 1996. Draft Standard. URL: https://tools.ietf.org

/html/rfc2045

S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best

Current Practice. URL: https://tools.ietf.org/html/rfc2119

A. Costello. Punycode: A Bootstring encoding of Unicode for Internationalized Domain Names

in Applications (IDNA). March 2003. Proposed Standard. URL: https://tools.ietf.org

/html/rfc3492

G. Klyne; M. Nottingham; J. Mogul. Registration Procedures for Message Header Fields.

September 2004. Best Current Practice. URL: https://tools.ietf.org/html/rfc3864

T. Berners-Lee; R. Fielding; L. Masinter. Uniform Resource Identifier (URI): Generic Syntax.

January 2005. Internet Standard. URL: https://tools.ietf.org/html/rfc3986

S. Josefsson. The Base16, Base32, and Base64 Data Encodings. October 2006. Proposed

Standard. URL: https://tools.ietf.org/html/rfc4648

D. Crocker, Ed.; P. Overell. Augmented BNF for Syntax Specifications: ABNF. January 2008.

Internet Standard. URL: https://tools.ietf.org/html/rfc5234

D. Ross; T. Gondrom. HTTP Header Field X-Frame-Options. October 2013. Informational. URL:

https://tools.ietf.org/html/rfc7034

R. Fielding, Ed.; J. Reschke, Ed.. Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and

Routing. June 2014. Proposed Standard. URL: https://tools.ietf.org/html/rfc7230

R. Fielding, Ed.; J. Reschke, Ed.. Hypertext Transfer Protocol (HTTP/1.1): Semantics and

Content. June 2014. Proposed Standard. URL: https://tools.ietf.org/html/rfc7231

M. West. Initial Assignment for the Content Security Policy Directives Registry. January 2016.

Informational. URL: https://tools.ietf.org/html/rfc7762

[REPORTING]

[RFC2045]

[RFC2119]

[RFC3492]

[RFC3864]

[RFC3986]

[RFC4648]

[RFC5234]

[RFC7034]

[RFC7230]

[RFC7231]

[RFC7762]

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

109 of 113 16/01/2021, 17:19

M. Nottingham. Web Linking. October 2017. Proposed Standard. URL: https://tools.ietf.org

/html/rfc8288

Alex Russell; et al. Service Workers 1. 2 November 2017. WD. URL: https://www.w3.org

/TR/service-workers-1/

Devdatta Akhawe; et al. Subresource Integrity. 23 June 2016. REC. URL: https://www.w3.org

/TR/SRI/

Anne van Kesteren. URL Standard. Living Standard. URL: https://url.spec.whatwg.org/

Cameron McCormack; Boris Zbarsky; Tobie Langel. Web IDL. 15 December 2016. ED. URL:

https://heycam.github.io/webidl/

Ian Kilpatrick. Worklets Level 1. 7 June 2016. WD. URL: https://www.w3.org/TR/worklets-1/

Marcos Caceres; et al. Web App Manifest. 6 September 2018. WD. URL: https://www.w3.org

/TR/appmanifest/

Ilya Grigorik; et al. Beacon. 13 April 2017. CR. URL: https://www.w3.org/TR/beacon/

Mike West; Adam Barth; Daniel Veditz. Content Security Policy Level 2. 15 December 2016.

REC. URL: https://www.w3.org/TR/CSP2/

Chris Evans. Generic cross-browser cross-domain theft. 28 December 2009. URL:

https://scarybeastsecurity.blogspot.com/2009/12/generic-cross-browser-cross-domain.html

Ian Hickson. Server-Sent Events. 3 February 2015. REC. URL: https://www.w3.org

/TR/eventsource/

filedescriptor. CSP 2015. 23 November 2015. URL: https://blog.innerht.ml/csp-2015

/#danglingmarkupinjection

[RFC8288]

[SERVICE-WORKERS-1]

[SRI]

[URL]

[WebIDL]

[WORKLETS-1]

Informative References

[APPMANIFEST]

[BEACON]

[CSP2]

[CSS-ABUSE]

[EVENTSOURCE]

[FILEDESCRIPTOR-2015]

[H5SC3]

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

110 of 113 16/01/2021, 17:19

Mario Heiderich. H5SC Minichallenge 3: "Sh*t, it's CSP!". URL: https://github.com/cure53

/XSSChallengeWiki/wiki/H5SC-Minichallenge-3:-%22Sh*t,-it%27s-CSP!%22

Anne Van Kesteren; Maciej Stachowiak. HTML Design Principles. URL: https://www.w3.org

/TR/html-design-principles/

Mike West. Mixed Content. 2 August 2016. CR. URL: https://www.w3.org/TR/mixed-content/

Paul Stone. Pixel Perfect Timing Attacks with HTML5. URL: https://www.contextis.com/media

/downloads/Pixel_Perfect_Timing_Attacks_with_HTML5_Whitepaper.pdf

Brad Hill. User Interface Security and the Visibility API. 7 June 2016. WD. URL:

https://www.w3.org/TR/UISecurity/

Mike West. Upgrade Insecure Requests. 8 October 2015. CR. URL: https://www.w3.org

/TR/upgrade-insecure-requests/

Ian Hickson. The WebSocket API. 20 September 2012. CR. URL: https://www.w3.org

/TR/websockets/

Anne van Kesteren. XMLHttpRequest Standard. Living Standard. URL:

https://xhr.spec.whatwg.org/

James Clark. XSL Transformations (XSLT) Version 1.0. 16 November 1999. REC. URL:

https://www.w3.org/TR/xslt/

enum SecurityPolicyViolationEventDisposition {

"enforce", "report"

};

[Constructor(DOMString type, optional SecurityPolicyViolationEventInit eventInitDict

Exposed=(Window,Worker)]

interface SecurityPolicyViolationEvent : Event {

readonly attribute USVString documentURI;

readonly attribute USVString referrer;

[HTML-DESIGN]

[MIX]

[TIMING]

[UISECURITY]

[UPGRADE-INSECURE-REQUESTS]

[WEBSOCKETS]

[XHR]

[XSLT]

IDL Index

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

111 of 113 16/01/2021, 17:19

readonly attribute USVString blockedURI;

readonly attribute DOMString violatedDirective;

readonly attribute DOMString effectiveDirective;

readonly attribute DOMString originalPolicy;

readonly attribute USVString sourceFile;

readonly attribute DOMString sample;

readonly attribute SecurityPolicyViolationEventDisposition disposition

readonly attribute unsigned short statusCode;

readonly attribute unsigned long lineNumber;

readonly attribute unsigned long columnNumber;

};

dictionary SecurityPolicyViolationEventInit : EventInit {

required USVString documentURI;

USVString referrer = "";

USVString blockedURI = "";

required DOMString violatedDirective;

required DOMString effectiveDirective;

required DOMString originalPolicy;

USVString sourceFile = "";

DOMString sample = "";

required SecurityPolicyViolationEventDisposition disposition;

required unsigned short statusCode;

unsigned long lineNumber = 0;

unsigned long columnNumber = 0;

};

Issues Index

ISSUE 1 Is this kind of thing specified anywhere? I didn’t see anything that looked useful in

[ECMA262]. ↵

ISSUE 2 How, exactly, do we get the status code? We don’t actually store it anywhere. ↵

ISSUE 3 This concept is missing from W3C’s Workers. <https://github.com/w3c/html

/issues/187> ↵

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

112 of 113 16/01/2021, 17:19

ISSUE 4 Stylesheet loading is not yet integrated with Fetch in W3C’s HTML.

<https://github.com/whatwg/html/issues/198> ↵

ISSUE 5 Stylesheet loading is not yet integrated with Fetch in WHATWG’s HTML.

<https://github.com/whatwg/html/issues/968> ↵

ISSUE 6 This hook is missing from W3C’s HTML. <https://github.com/w3c/html/issues/547>

↵

ISSUE 7 W3C’s HTML is not based on Fetch, and does not have a process a navigate response

algorithm into which to hook. <https://github.com/w3c/html/issues/548> ↵

ISSUE 8 HostEnsureCanCompileStrings() does not include the string which is going to

be compiled as a parameter. We’ll also need to update HTML to pipe that value through to CSP.

<https://github.com/tc39/ecma262/issues/938> ↵

ISSUE 9 This needs to be better explained. <https://github.com/w3c/webappsec-

csp/issues/212> ↵

ISSUE 10 Do something interesting to the execution context in order to lock down interesting

CSSOM algorithms. I don’t think CSSOM gives us any hooks here, so let’s work with them to put

something reasonable together. ↵

ISSUE 11 Spell this out in more detail as part of defining X-Frame-Options integration with the

process a navigate response algorithm. <https://github.com/whatwg/html/issues/1230> ↵

ISSUE 12 We need some sort of hook in HTML to record this error if we’re planning on using it

here. <https://github.com/whatwg/html/issues/3257> ↵

ISSUE 13 This processing is meant to mitigate the risk of dangling markup attacks that steal the

nonce from an existing element in order to load injected script. It is fairly expensive, however, as it

requires that we walk through all attributes and their values in order to determine whether the

script should execute. Here, we try to minimize the impact by doing this check only for <script>

elements when a nonce is present, but we should probably consider this algorithm as "at risk" until

we know its impact. <https://github.com/w3c/webappsec-csp/issues/98> ↵

Content Security Policy Level 3 https://www.w3.org/TR/CSP3/

113 of 113 16/01/2021, 17:19

