
Content Security Policy 1.0

W3C Candidate Recommendation 15 November 2012

This version:
http://www.w3.org/TR/2012/CR-CSP-20121115/

Latest published version:
http://www.w3.org/TR/CSP/

Previous version:
http://www.w3.org/TR/2012/WD-CSP-20120710/

Latest editor's draft:
http://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-1.0-specification.html

Editors:
Brandon Sterne, Invited Expert (formerly of Mozilla Corporation)
Adam Barth, Google, Inc.

Copyright © 2010-2012 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, trademark and
document use rules apply.

Abstract

This document defines a policy language used to declare a set of content restrictions for
a web resource, and a mechanism for transmitting the policy from a server to a client
where the policy is enforced.

Status of This Document

This section describes the status of this document at the time of its publication. Other
documents may supersede this document. A list of current W3C publications and the
latest revision of this technical report can be found in the W3C technical reports index at
http://www.w3.org/TR/.

This document describes a proposal that has been discussed by the broader community
since 2010 There are experimental implementations in Firefox and Chrome, using the
header names X-Content-Security-Policy and X-WebKit-CSP respectively. Internet
Explorer 10 Platform Preview also contains a partial implementation, using the header
name X-Content-Security-Policy.

In addition to the documents in the W3C Web Application Security working group, the
This version is outdated!

For the latest version, please look at https://www.w3.org/TR/CSP1/.
▴ expand

Content Security Policy 1.0 https://www.w3.org/TR/2012/CR-CSP-20121115/

1 of 19 16/01/2021, 17:22

framework-reqs.

This document was published by the Web Application Security Working Group as a
Candidate Recommendation. This document is intended to become a W3C
Recommendation. If you wish to make comments regarding this document, please send
them to public-webappsec@w3.org (subscribe, archives). W3C publishes a Candidate
Recommendation to indicate that the document is believed to be stable and to encourage
implementation by the developer community. This Candidate Recommendation is
expected to advance to Proposed Recommendation no earlier than 30 November 2012.
All feedback is welcome. A diff-marked version against the previous version of this
document is available.

Publication as a Candidate Recommendation does not imply endorsement by the W3C
Membership. This is a draft document and may be updated, replaced or obsoleted by
other documents at any time. It is inappropriate to cite this document as other than work
in progress.

The entrance criteria for this document to enter the Proposed Recommendation stage is
to have a minimum of two independent and interoperable user agents that
implementation all the features of this specification, which will be determined by passing
the user agent tests defined in the test suite developed by the Working Group.

This document was produced by a group operating under the 5 February 2004 W3C
Patent Policy. W3C maintains a public list of any patent disclosures made in connection
with the deliverables of the group; that page also includes instructions for disclosing a
patent. An individual who has actual knowledge of a patent which the individual believes
contains Essential Claim(s) must disclose the information in accordance with section 6 of
the W3C Patent Policy.

Table of Contents

1. Introduction
2. Conformance

2.1 Key Concepts and Terminology
3. Framework

3.1 Policy Delivery
3.1.1 Content-Security-Policy Header Field
3.1.2 Content-Security-Policy-Report-Only Header Field

3.2 Syntax and Algorithms
3.2.1 Policies

3.2.1.1 Parsing
3.2.2 Source List

3.2.2.1 Parsing
3.2.2.2 Matching

3.3 Processing Model
4. Directives

4.1 default-src
4.2 script-src
4.3 object-src
4.4 style-src
4.5 img-src

Content Security Policy 1.0 https://www.w3.org/TR/2012/CR-CSP-20121115/

2 of 19 16/01/2021, 17:22

4.6 media-src
4.7 frame-src
4.8 font-src
4.9 connect-src
4.10 sandbox (Optional)
4.11 report-uri

5. Examples
5.1 Sample Policy Definitions
5.2 Sample Violation Report

6. Security Considerations
6.1 Cascading Style Sheet (CSS) Parsing
6.2 Violation Reports

7. Implementation Considerations
8. IANA Considerations

8.1 Content-Security-Policy
8.2 Content-Security-Policy-Report-Only

A. References
A.1 Normative references

1. Introduction

This section is non-normative.

This document defines Content Security Policy, a mechanism web applications can use
to mitigate a broad class of content injection vulnerabilities, such as cross-site scripting
(XSS). Content Security Policy is a declarative policy that lets the authors (or server
administrators) of a web application inform the client from where the application expects
to load resources.

To mitigate XSS, for example, a web application can declare from where it expects to
load scripts, allowing the client to detect and block malicious scripts injected into the
application by an attacker.

Content Security Policy (CSP) is not intended as a first line of defense against content
injection vulnerabilities. Instead, CSP is best used as defense-in-depth, to reduce the
harm caused by content injection attacks.

There is often a non-trivial amount of work required to apply CSP to an existing web
application. To reap the greatest benefit, authors will need to move all inline script and
style out-of-line, for example into external scripts, because the user agent cannot
determine whether an inline script was injected by an attacker.

To take advantage of CSP, a web application opts into using CSP by supplying a
Content-Security-Policy HTTP header Such policies apply the current resource
representation only. To supply a policy for an entire site, the server needs to supply a
policy with each resource representation.

2. Conformance

As well as sections marked as non-normative, all authoring guidelines, diagrams,
examples, and notes in this specification are non-normative. Everything else in this

Content Security Policy 1.0 https://www.w3.org/TR/2012/CR-CSP-20121115/

3 of 19 16/01/2021, 17:22

specification is normative.

The key words , , , , , , ,
and in this specification are to be interpreted as described in [RFC2119].

Requirements phrased in the imperative as part of algorithms (such as "strip any leading
space characters" or "return false and abort these steps") are to be interpreted with the
meaning of the key word (" ", " ", " ", etc) used in introducing the
algorithm.

A conformant user agent implement all the requirements listed in this
specification that are applicable to user-agents, and implement those marked as
"(Optional)".

A conformant server implement all the requirements listed in this specification that
are applicable to servers.

2.1 Key Concepts and Terminology

This section defines several terms used throughout the document.

The term security policy, or simply policy, for the purposes of this specification refers to
either:

1. a set of security preferences for restrictions within which the content can operate, or
2. a fragment of text that codifies these preferences.

The security policies defined by this document are applied by a user agent on a per-
resource representation basis. Specifically, when a user agent receives a policy along
with the representation of a given resource, that policy applies to that resource
representation only. This document often refers to that resource representation as the
protected resource.

A server transmits its security policy for a particular protected resource as a collection of
directives, such as default-src 'self', each of which declares a specific set of
restrictions for that resource as instantiated by the user agent. More details are provided
in the directives section.

A directive consists of a directive name, which indicates the privileges controlled by the
directive, and a directive value, which specifies the restrictions the policy imposes on
those privileges.

The term origin is defined in the Origin specification. [RFC6454]

The term URI is defined in the URI specification. [URI]

The term resource representation is defined in the HTTP 1.1 specification. [HTTP11]

The <script>, <object>, <embed>, , <video>, <audio>, <source>, <track>, <link>,
<applet>, <frame> and <iframe> elements are defined in the HTML5 specification.
[HTML5]

A plugin is defined in the HTML5 specification. [HTML5]

Content Security Policy 1.0 https://www.w3.org/TR/2012/CR-CSP-20121115/

4 of 19 16/01/2021, 17:22

The @font-face Cascading Style Sheets (CSS) rule is defined in the CSS Fonts Module
Level 3 specification. [CSS3FONT]

The XMLHttpRequest object is defined in the XMLHttpRequest specification.
[XMLHTTPREQUEST]

The WebSocket object is defined in the WebSocket specification. [WEBSOCKETS]

The EventSource object is defined in the EventSource specification. [EVENTSOURCE]

The Augmented Backus-Naur Form (ABNF) notation used in this document is specified in
RFC 5234. [ABNF]

This document also uses the ABNF extension "#rule" as defined in HTTP 1.1. [HTTP11]

The following core rules are included by reference, as defined in [ABNF Appendix B.1]:
ALPHA (letters), DIGIT (decimal 0-9), WSP (white space) and VCHAR (printing characters).

3. Framework

This section defines the general framework for content security policies, including the
delivery mechanisms and general syntax for policies. The next section contains the
details of the specific directives introduced in this specification.

3.1 Policy Delivery

The server delivers the policy to the user agent via an HTTP response header.

3.1.1 Content-Security-Policy Header Field

The Content-Security-Policy header field is the preferred mechanism for delivering a
CSP policy.

"Content-Security-Policy:" 1#policy

A server send more than one HTTP header field named Content-Security-Policy
with a given resource representation.

A server send different Content-Security-Policy header field values with different
representations of the same resource or with different resources.

Upon receiving an HTTP response containing at least one Content-Security-Policy
header field, the user agent enforce each of the policies contained in each such
header field.

3.1.2 Content-Security-Policy-Report-Only Header Field

The Content-Security-Policy-Report-Only header field lets servers experiment with
policies by monitoring (rather than enforcing) a policy.

"Content-Security-Policy-Report-Only:" 1#policy

Content Security Policy 1.0 https://www.w3.org/TR/2012/CR-CSP-20121115/

5 of 19 16/01/2021, 17:22

For example, a server operators might wish to develop their security policy iteratively. The
operators can deploy a report-only policy based on their best estimate of how their site
behaves. If their site violates this policy, instead of breaking the site, the user agent will
send violation reports to a URI specified in the policy. Once a site has confidence that the
policy is appropriate, they start enforcing the policy using the Content-Security-Policy
header field.

A server send more than one HTTP header field named Content-Security-Policy-
Report-Only with a given resource representation.

A server send different Content-Security-Policy-Report-Only header field values
with different representations of the same resource or with different resources.

Upon receiving an HTTP response containing at least one Content-Security-Policy-
Report-Only header field, the user agent monitor each of the policies contained in
each such header field.

3.2 Syntax and Algorithms

3.2.1 Policies

A CSP policy consists of a U+003B SEMICOLON (;) delimited list of directives:

policy = [directive *(";" [directive])]

Each directive consists of a directive-name and (optionally) a directive-value:

directive = *WSP [directive-name [WSP directive-value]]
directive-name = 1*(ALPHA / DIGIT / "-")
directive-value = *(WSP / <VCHAR except ";" and ",">)

3.2.1.1 Parsing

To parse a CSP policy policy, the user agent use an algorithm equivalent to the
following:

1. Let the set of directives be the empty set.
2. For each non-empty token returned by strictly splitting the string policy on the

character U+003B SEMICOLON (;):
1. Skip whitespace.
2. Collect a sequence of characters that are not space characters. The collected

characters are the directive name.
3. If there are characters remaining in token, skip ahead exactly one character

(which must be a space character).
4. The remaining characters in token (if any) are the directive value.
5. If the set of directives already contains a directive with name directive name,

ignore this instance of the directive and continue to the next token.
6. Add a directive to the set of directives with name directive name and value

directive value.
3. Return the set of directives.

Content Security Policy 1.0 https://www.w3.org/TR/2012/CR-CSP-20121115/

6 of 19 16/01/2021, 17:22

3.2.2 Source List

Many CSP directives use a value consisting of a source list.

Each source expression in the source list represents a location from which content of
the specified type can be retrieved. For example, the source expression 'self'
represents the set of URIs which are in the same origin as the protected resource and the
source expression 'unsafe-inline' represents content supplied inline in the resource
itself.

source-list = *WSP [source-expression *(1*WSP source-expression) *WSP]
 / *WSP "'none'" *WSP
source-expression = scheme-source / host-source / keyword-source
scheme-source = scheme ":"
host-source = [scheme "://"] host [port]
ext-host-source = host-source "/" *(<VCHAR except ";" and ",">)
 ; ext-host-source is reserved for future use.
keyword-source = "'self'" / "'unsafe-inline'" / "'unsafe-eval'"
scheme = <scheme production from RFC 3986>
host = "*" / ["*."] 1*host-char *("." 1*host-char)
host-char = ALPHA / DIGIT / "-"
port = ":" (1*DIGIT / "*")

3.2.2.1 Parsing

To parse a source list source list, the user agent use an algorithm equivalent to
the following:

1. If source list (with leading and trailing whitespace stripped) is a case insensitive
match for the string 'none' (including the quotation marks), return the empty set.

2. Let the set of source expressions be the empty set.
3. For each token returned by splitting source list on spaces, if the token matches the

grammar for source-expression or ext-host-source, add the token to the set of
source expressions.

4. Return the set of source expressions.

3.2.2.2 Matching

To check whether a URI matches a source expression, the user agent use an
algorithm equivalent to the following:

1. If the source expression a consists of a single U+002A ASTERISK character (*),
then return does match.

2. If the source expression matches the grammar for scheme-source:
1. If the URI's scheme is a case-insensitive match for the source expression's

scheme, return does match.
2. Otherwise, return does not match.

3. If the source expression matches the grammar for host-source or ext-host-source:
1. If the URI does not contain a host, then return does not match.
2. Let uri-scheme, uri-host, and uri-port be the scheme, host, and port of the

URI, respectively. If the URI does not have a port, then let uri-port be the
default port for uri-scheme.

Content Security Policy 1.0 https://www.w3.org/TR/2012/CR-CSP-20121115/

7 of 19 16/01/2021, 17:22

3. If the source expression has a scheme that is not a case insensitive match for
uri-scheme, then return does not match.

4. If the source expression does not have a scheme and if uri-scheme is not a
case insensitive match for the scheme of the protected resource's URI, then
return does not match.

5. If the first character of the source expression's host is an U+002A ASTERISK
character (*) and the remaining characters, including the leading U+002E
FULL STOP character (.), are not a case insensitive match for the rightmost
characters of uri-host, then return does not match.

6. If uri-host is not a case insensitive match for the source expression's host,
then return does not match.

7. If the source expression does not contain a port and uri-port is not the default
port for uri-scheme, then return does not match.

8. If the source expression does contain a port that (a) does not contain an
U+002A ASTERISK character (*) and (b) does not represent the same
number as uri-port, then return does not match.

9. Otherwise, return does match.
4. If the source expression is a case insensitive match for 'self' (including the

quotation marks), then return does match if the URI has the same scheme, host,
and port as the protected resource's URI (using the default port for the appropriate
scheme if either or both URIs are missing ports).

5. Otherwise, return does not match.

A URI matches a source list, if, and only if, the URI matches at least one source
expression in the set of source expressions obtained by parsing the source list. Notice
that no URIs match an empty set of source expressions, such as the set obtained by
parsing the source list 'none'.

3.3 Processing Model

To enforce a CSP policy, the user agent parse the policy and enforce each of the
directives contained in the policy, where the specific requirements for enforcing each
directive are defined separately for each directive (See Directives, below).

Generally speaking, enforcing a directive prevents the protected resource from
performing certain actions, such as loading scripts from URIs other than those indicated
in a source list. These restrictions make it more difficult for an attacker to abuse an
injection vulnerability in the resource because the attacker will be unable to usurp the
resource's privileges that have been restricted in this way.

Enforcing a CSP policy interfere with the operation of user-supplied scripts
such as third-party user-agent add-ons and JavaScript bookmarklets.

To monitor a CSP policy, the user agent parse the policy and monitor each of the
directives contained in the policy.

Monitoring a directive does not prevent the protected resource from undertaking any
actions. Instead, any actions that would have been prevented by the directives are
instead reported to the developer of the web application. Monitoring a CSP policy is
useful for testing whether enforcing the policy will cause the web application to
malfunction.

Content Security Policy 1.0 https://www.w3.org/TR/2012/CR-CSP-20121115/

8 of 19 16/01/2021, 17:22

A server cause user agents to monitor one policy while enforcing another policy by
returning both Content-Security-Policy and Content-Security-Policy-Report-Only
header fields. For example, if a server operator is using one policy but wishes to
experiment with a stricter policy, the server operator can monitor the stricter policy while
enforcing the original policy. Once the server operator is satisfied that the stricter policy
does not break the web application, the server operator can start enforcing the stricter
policy.

If the user agent monitors or enforces a CSP policy that does not contain any directives,
the user agent report a warning message in the developer console.

If the user agent monitors or enforces a CSP policy that contains an unrecognized
directive, the user agent report a warning message in the developer console
indicating the name of the unrecognized directive.

Whenever a user agent runs a worker: [WEBWORKERS]

If the user agent is enforcing a CSP policy for the owner document, the user agent
 enforce the CSP policy for the worker.

If the user agent is monitoring a CSP policy for the owner document, the user agent
 monitor the CSP policy for the worker.

4. Directives

This section describes the content security policy directives introduced in this
specification.

In order to protect against Cross-Site Scripting (XSS), web application authors
include

both the script-src and object-src directives, or
include a default-src directive, which covers both scripts and plugins.

In either case, authors include 'unsafe-inline' in their CSP policies if they
wish to protect themselves against XSS.

4.1 default-src

The default-src directive sets a default source list for a number of directives. The syntax
for the name and value of the directive are described by the following ABNF grammar:

directive-name = "default-src"
directive-value = source-list

Let the default sources be the result of parsing the directive's value as a source list.

To enforce the default-src directive, the user agent enforce the following
directives:

script-src
object-src
style-src

Content Security Policy 1.0 https://www.w3.org/TR/2012/CR-CSP-20121115/

9 of 19 16/01/2021, 17:22

img-src
media-src
frame-src
font-src
connect-src

If not specified explicitly in the policy, the directives listed above will use the default
sources.

4.2 script-src

The script-src directive restricts which scripts the protected resource can execute. The
directive also controls other resources, such as XSLT style sheets [XSLT], which can
cause the user agent to execute script. The syntax for the name and value of the
directive are described by the following ABNF grammar:

directive-name = "script-src"
directive-value = source-list

If the policy contains an explicit script-src, let the allowed script sources be the result of
parsing the directive's value as a source list. Otherwise, let the allowed script sources be
the default sources

If 'unsafe-inline' is not in allowed script sources:

Whenever the user agent would execute an inline script (either from a script
element or from an inline event handler), instead the user agent execute
script.
Whenever the user agent would execute script contained in a javascript URI,
instead the user agent execute the script. (The user agent
execute script contained in "bookmarklets" even when enforcing this restriction.)

If 'unsafe-eval' is not in allowed script sources:

Instead of evaluating their arguments, both operator eval and function eval
throw a security exception. [ECMA-262]
When called as a constructor, the function Function throw a security
exception. [ECMA-262]
When called with a first argument that is non-callable (e.g., not a function), the
setTimeout function return zero without creating a timer.
When called with a first argument that is non-callable (e.g., not a function), the
setInterval function return zero without creating a timer.

The term callable refers to an object whose interface has one or more callers as defined
in the Web IDL specification [WEBIDL].

Whenever the user agent fetches a URI (including when following redirects) in the course
of one of the following activities, if the URI does not match the allowed script sources, the
user agent act as if it had received an empty HTTP 400 response:

Requesting a script, such as when processing the src attribute of a script element
or when processing the Worker or SharedWorker constructors.

Content Security Policy 1.0 https://www.w3.org/TR/2012/CR-CSP-20121115/

10 of 19 16/01/2021, 17:22

Requesting an Extensible Stylesheet Language Transformations (XSLT) [XSLT],
such as when processing the <?xml-stylesheet?> processing directive in an XML
document [XML11], the href attributes on <xsl:include> element, or the href
attributes on <xsl:import> element.

4.3 object-src

The object-src directive restricts from where the protected resource can load plugins.
The syntax for the name and value of the directive are described by the following ABNF
grammar:

directive-name = "object-src"
directive-value = source-list

If the policy contains an explicit object-src, let the allowed object sources be the result of
parsing the directive's value as a source list. Otherwise, let the allowed object sources be
the default sources

Whenever the user agent fetches a URI (including when following redirects) in the course
of one of the following activities, if the URI does not match the allowed object sources,
the user agent act as if it had received an empty HTTP 400 response:

Requesting data for a plugin, such as when processing the data attribute of an
object element, the src attribute of an embed elements, or the code or archive
attributes of an applet element.
Requesting data for display in a nested browsing context in the protected resource
created by an object or an embed element.
Navigating such a nested browsing context.

It is not required that the consumer of the element's data be a plugin in order for the
object-src directive to be enforced. Data for any object, embed, or applet element
match the allowed object sources in order to be fetched. This is true even when the
element data is semantically equivalent to content which would otherwise be restricted by
one of the other directives, such as an object element with a text/html MIME type.

Whenever the user agent would load a plugin without an associated URI (e.g., because
the object element lacked a data attribute), if the protected resource's URI does not
match the allowed object sources, the user agent load the plugin.

4.4 style-src

The style-src directive restricts which styles the user applies to the protected resource.
The syntax for the name and value of the directive are described by the following ABNF
grammar:

directive-name = "style-src"
directive-value = source-list

If the policy contains an explicit style-src, let the allowed style sources be the result of
parsing the directive's value as a source list. Otherwise, let the allowed style sources be
the default sources

Content Security Policy 1.0 https://www.w3.org/TR/2012/CR-CSP-20121115/

11 of 19 16/01/2021, 17:22

If 'unsafe-inline' is not in allowed style sources:

Whenever the user agent would apply style from a style element, instead the user
agent MUST ignore the style.
Whenever the user agent would apply style from a style attribute, instead the user
agent MUST ignore the style.

Note: These restrictions on inline do not prevent the user agent from applying style from
an external stylesheet (e.g., found via <link rel="stylesheet">). The user agent is also
not prevented from applying style from Cascading Style Sheets Object Model (CSSOM).
[CSSOM]

Whenever the user agent fetches a URI (including when following redirects) in the course
of one of the following activities, if the URI does not match the allowed style sources, the
user agent act as if it had received an empty HTTP 400 response:

Requesting external style sheets, such as when processing the href attribute of a
link element with a rel attribute containing the token stylesheet or when
processing the @import directive in a stylesheet.

Note: The style-src directive does not restrict the use of XSLT. XSLT is restricted by the
script-src directive because the security consequences of including an untrusted XSLT
stylesheet are similar to those incurred by including an untrusted script.

4.5 img-src

The img-src directive restricts from where the protected resource can load images. The
syntax for the name and value of the directive are described by the following ABNF
grammar:

directive-name = "img-src"
directive-value = source-list

If the policy contains an explicit img-src, let the allowed image sources be the result of
parsing the directive's value as a source list. Otherwise, let the allowed image sources be
the default sources

Whenever the user agent fetches a URI (including when following redirects) in the course
of one of the following activities, if the URI does not match the allowed image sources,
the user agent act as if it had received an empty HTTP 400 response:

Requesting data for an image, such as when processing the src attribute of an img
elements, the url() or image() values on any Cascading Style Sheets (CSS)
property that is capable of loading an image [CSS3-Images], or the href attribute of
a link element with an image-related rel attribute, such as icon.

4.6 media-src

The media-src directive restricts from where the protected resource can load video and
audio. The syntax for the name and value of the directive are described by the following
ABNF grammar:

Content Security Policy 1.0 https://www.w3.org/TR/2012/CR-CSP-20121115/

12 of 19 16/01/2021, 17:22

directive-name = "media-src"
directive-value = source-list

If the policy contains an explicit media-src, let the allowed media sources be the result of
parsing the directive's value as a source list. Otherwise, let the allowed media sources be
the default sources

Whenever the user agent fetches a URI (including when following redirects) in the course
of one of the following activities, if the URI does not match the allowed media sources,
the user agent act as if it had received an empty HTTP 400 response:

Requesting data for a video or audio clip, such as when processing the src attribute
of a video, audio, source, or track elements.

4.7 frame-src

The frame-src directive restricts from where the protected resource can embed frames.
The syntax for the name and value of the directive are described by the following ABNF
grammar:

directive-name = "frame-src"
directive-value = source-list

If the policy contains an explicit frame-src, let the allowed frame sources be the result of
parsing the directive's value as a source list. Otherwise, let the allowed frame sources be
the default sources

Whenever the user agent fetches a URI (including when following redirects) in the course
of one of the following activities, if the URI does not match the allowed frame sources, the
user agent act as if it had received an empty HTTP 400 response:

Requesting data for display in a nested browsing context in the protected resource
created by an iframe or a frame element.
Navigating such a nested browsing context.

4.8 font-src

The font-src directive restricts from where the protected resource can load fonts. The
syntax for the name and value of the directive are described by the following ABNF
grammar:

directive-name = "font-src"
directive-value = source-list

If the policy contains an explicit font-src, let the allowed font sources be the result of
parsing the directive's value as a source list. Otherwise, let the allowed font sources be
the default sources

Whenever the user agent fetches a URI (including when following redirects) in the course
of one of the following activities, if the URI does not match the allowed font sources, the
user agent act as if it had received an empty HTTP 400 response:

Requesting data for display in a font, such as when processing the @font-face

Content Security Policy 1.0 https://www.w3.org/TR/2012/CR-CSP-20121115/

13 of 19 16/01/2021, 17:22

Cascading Style Sheets (CSS) rule.

4.9 connect-src

The connect-src directive restricts which URIs the protected resource can load using
script interfaces. The syntax for the name and value of the directive are described by the
following ABNF grammar:

directive-name = "connect-src"
directive-value = source-list

If the policy contains an explicit connect-src, let the allowed connection targets be the
result of parsing the directive's value as a source list. Otherwise, let the allowed
connection targets be the default sources

Whenever the user agent fetches a URI (including when following redirects) in the course
of one of the following activities, if the URI does not match the allowed font sources, the
user agent act as if it had received an empty HTTP 400 response:

Processing the open() method of an XMLHttpRequest object.
Processing the WebSocket constructor.
Processing the EventSource constructor.

4.10 sandbox (Optional)

The sandbox directive is optional.

The sandbox directive specifies an HTML sandbox policy that the user agent applies to
the protected resource. The syntax for the name and value of the directive are described
by the following ABNF grammar:

directive-name = "sandbox"
directive-value = token *(1*WSP token)
token = <token from RFC 2616>

When enforcing the sandbox directive, a user agent that supports the sandbox directive
parse the sandboxing directive using the directive-value as the input and

protected resource's forced sandboxing flag set as the output. [HTML5]

4.11 report-uri

The report-uri directive specifies a URI to which the user agent sends reports about
policy violation. The syntax for the name and value of the directive are described by the
following ABNF grammar:

directive-name = "report-uri"
directive-value = uri-reference *(1*WSP uri-reference)
uri-reference = <URI-reference from RFC 3986>

Let the set of report URIs be the value of the report-uri directive, each resolved relative
to the protected resource's URI.

To send a violation report, the user agent use an algorithm equivalent to the

Content Security Policy 1.0 https://www.w3.org/TR/2012/CR-CSP-20121115/

14 of 19 16/01/2021, 17:22

following:

1. Prepare a JSON object violation-object with the following keys and values:
[RFC4627]
csp-report

A JSON object containing the following keys and values:
document-uri

The address of the protected resource, with any <fragment> component
removed

referrer
The referrer attribute of the protected resource

blocked-uri
URI of the resource that was prevented from loading due to the policy
violation, with any <fragment> component removed

violated-directive
The policy directive that was violated

original-policy
The original policy as received by the user-agent.

2. If the origin of the blocked-uri is not the same as the origin of the protected
resource, then replace the blocked-uri with the ASCII serialization of the blocked-
uri's origin.

3. Let the violation report be the JSON stringification of the violation-object.
4. For each report URI in the set of report URIs:

1. Fetch the report URI from origin of the protected resource, with the
synchronous flag not set, using HTTP method POST, with a Content-Type
header field of application/json with an entity body consisting of the violation
report. The user agent follow redirects when fetching this resource.
(Note: The user agent ignores the fetched resource.)

5. Examples

5.1 Sample Policy Definitions

This section is non-normative.

This section provides some sample use cases and accompanying security policies.

Example 1: A server wishes to load resources only form its own origin:

Content-Security-Policy: default-src 'self'

Example 2: An auction site wishes to load images from any URI, plugin content from a
list of trusted media providers (including a content distribution network), and scripts only
from a server under its control hosting sanitized ECMAScript:

Content-Security-Policy: default-src 'self'; img-src *;
 object-src media1.example.com media2.example.com *.cdn.example.com;
 script-src trustedscripts.example.com

Example 3: Online banking site wishes to ensure that all of the content in its pages is
loaded over TLS to prevent attackers from eavesdropping on insecure content requests:

Content Security Policy 1.0 https://www.w3.org/TR/2012/CR-CSP-20121115/

15 of 19 16/01/2021, 17:22

Content-Security-Policy: default-src https: 'unsafe-inline' 'unsafe-eval'

This policy allows inline content (such as inline script elements), use of eval, and
loading resources over https. Note: This policy does not provide any protection from
cross-site scripting vulnerabilities.

Example 4: A social network wishes to ensure that all scripts are loaded from a specific
path to prevent user-generated content from being interpreted as script:

Content-Security-Policy: default-src 'self'; script-src https://example.com/js/

Unfortunately, this use case is not supported in CSP 1.0. The user agent will ignore the
path and act as if the policy contained a script-src directive with value
https://example.com. A future version of CSP might begin enforcing these path
restrictions, however.

5.2 Sample Violation Report

This section is non-normative.

This section contains an example violation report the user agent might sent to a server
when the protected resource violations a sample policy.

In the following example, the user agent rendered a representation of the resource
http://example.org/page.html with the following CSP policy:

default-src 'self'; report-uri http://example.org/csp-report.cgi

The protected resource loaded an image from http://evil.example.com/image.png,
violating the policy.

{
 "csp-report": {
 "document-uri": "http://example.org/page.html",
 "referrer": "http://evil.example.com/haxor.html",
 "blocked-uri": "http://evil.example.com/image.png",
 "violated-directive": "default-src 'self'",
 "original-policy": "default-src 'self'; report-uri http://example.org/csp-report.cgi"
 }
}

6. Security Considerations

6.1 Cascading Style Sheet (CSS) Parsing

The style-src directive restricts the locations from which the protected resource can load
styles. However, if the user agent uses a lax CSS parsing algorithm, an attacker might be
able to trick the user agent into accepting malicious "style sheets" hosted by an otherwise
trustworthy origin.

These attacks are similar to the CSS cross-origin data leakage attack described by Chris
Evans in 2009. User agents defend against both attacks using the same
mechanism: stricter CSS parsing rules for style sheets with improper MIME types.

Content Security Policy 1.0 https://www.w3.org/TR/2012/CR-CSP-20121115/

16 of 19 16/01/2021, 17:22

6.2 Violation Reports

The violation reporting mechanism in this document has been designed to mitigate the
risk that a malicious web site could use violation reports to probe the behavior of other
servers. For example, consider a malicious web site that white lists https://example.com
as a source of images. If the malicious site attempts to load https://example.com/login
as an image, and the example.com server redirects to an identity provider (e.g.,
idenityprovider.example.net), CSP will block the request. If violation reports contained
the full blocked URL, the violation report might contain sensitive information contained in
the redirected URI, such as session identifiers or purported identities. For this reason, the
user agent includes only the origin of the blocked URI.

7. Implementation Considerations

The Content-Security-Policy header is an end-to-end header. It is processed and
enforced at the client and, therefore, be modified or removed by proxies or
other intermediaries not in the same administrative domain as the resource.

The originating administrative domain for a resource might wish to apply a Content-
Security-Policy header outside of the immediate context of an application. For example,
a large organization might have many resources and applications managed by different
individuals or teams but all subject to a uniform organizational standard. In such
situations, a Content-Security-Policy header might be added or combined with an
existing one at a network-edge security gateway device or web application firewall. To
enforce multiple policies, the administrator combine the policy into a single
header. An administrator might wish to use different combination algorithms depending
on his or her intended semantics.

One sensible policy combination algorithm is to start by allowing a default set of sources
and then letting individual upstream resource owners expand the set of allowed sources
by including additional origins. In this approach, the resultant policy is the union of all
allowed origins in the input policies.

Another sensible policy combination algorithm is to intersect the given policies. This
approach enforces that content comes from a certain whitelist of origins, for example,
preventing developers from including third-party scripts or content in violation of
organizational standards and practices. In this approach, the combination algorithm forms
the combined policy by removing disallowed hosts from the policies supplied by upstream
resource owners.

Interactions between the default-src and other directives be given special
consideration when combining policies. If none of the policies contains a default-src
directive, adding new src directives results in a more restrictive policy. However, if one or
more of the input policies contain a default-src directive, adding new src directives might
result in a less restrictive policy, for example, if the more specific directive contains a
more permissive set of allowed origins.

Using a more restrictive policy than the input policy authored by the resource owner
might prevent the resource from rendering or operating as intended.

Content Security Policy 1.0 https://www.w3.org/TR/2012/CR-CSP-20121115/

17 of 19 16/01/2021, 17:22

8. IANA Considerations

The permanent message header field registry (see [RFC3864]) should be updated with
the following registrations:

8.1 Content-Security-Policy

Header field name: Content-Security-Policy

Applicable protocol: http

Status: standard

Author/Change controller: W3C

Specification document: this specification (See Content-Security-Policy Header Field)

8.2 Content-Security-Policy-Report-Only

Header field name: Content-Security-Policy-Report-Only

Applicable protocol: http

Status: standard

Author/Change controller: W3C

Specification document: this specification (See Content-Security-Policy-Report-Only
Header Field)

A. References

A.1 Normative references

[ABNF]
D. Crocker and P. Overell. Augmented BNF for Syntax Specifications: ABNF.
January 2008. Internet RFC 5234. URL: http://www.ietf.org/rfc/rfc5234.txt

[CSS3FONT]
Michel Suignard; Chris Lilley. CSS3 module: Fonts. 2 August 2002. W3C Working
Draft. (Work in progress.) URL: http://www.w3.org/TR/2002/WD-css3-fonts-
20020802

[CSSOM]
Glenn Adams; Shane Stephens. CSS Object Model (CSSOM). 14 March 2012.
W3C Working Draft. (Work in progress.) URL: http://dev.w3.org/csswg/cssom/

[ECMA-262]
ECMAScript Language Specification. June 2011. URL: http://www.ecma-
international.org/publications/standards/Ecma-262.htm

[EVENTSOURCE]
Ian Hickson. Server-Sent Events. 26 April 2012. W3C Working Draft. (Work in
progress.) URL: http://www.w3.org/TR/eventsource/

[HTML5]

Content Security Policy 1.0 https://www.w3.org/TR/2012/CR-CSP-20121115/

18 of 19 16/01/2021, 17:22

Ian Hickson; David Hyatt. HTML5. 29 March 2012. W3C Working Draft. (Work in
progress.) URL: http://www.w3.org/TR/html5

[HTTP11]
R. Fielding; et al. Hypertext Transfer Protocol - HTTP/1.1. June 1999. Internet RFC
2616. URL: http://www.ietf.org/rfc/rfc2616.txt

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March
1997. Internet RFC 2119. URL: http://www.ietf.org/rfc/rfc2119.txt

[RFC4627]
D. Crockford. The application/json Media Type for JavaScript Object Notation
(JSON) July 2006. Internet RFC 4627. URL: http://www.ietf.org/rfc/rfc4627.txt

[RFC6454]
A. Barth. The Web Origin Concept. December 2011. Internet RFC 6454. URL:
http://www.rfc-editor.org/rfc/rfc6454.txt

[URI]
T. Berners-Lee; R. Fielding; L. Masinter. Uniform Resource Identifiers (URI): generic
syntax. January 2005. Internet RFC 3986. URL: http://www.ietf.org/rfc/rfc3986.txt

[WEBIDL]
Cameron McCormack. Web IDL. 27 September 2011. W3C Working Draft. (Work in
progress.) URL: http://www.w3.org/TR/2011/WD-WebIDL-20110927/

[WEBSOCKETS]
Ian Hickson. The WebSocket API. 24 May 2012. W3C Working Draft. (Work in
progress.) URL: http://www.w3.org/TR/websockets/

[WEBWORKERS]
Ian Hickson. Web Workers. 1 September 2011. W3C Working Draft. (Work in
progress.) URL: http://www.w3.org/TR/2011/WD-workers-20110901/

[XML11]
Eve Maler; et al. Extensible Markup Language (XML) 1.1 (Second Edition). 16
August 2006. W3C Recommendation. URL: http://www.w3.org/TR/2006/REC-
xml11-20060816

[XMLHTTPREQUEST]
Anne van Kesteren. The XMLHttpRequest Object. 15 April 2008. W3C Working
Draft. (Work in progress.) URL: http://www.w3.org/TR/2008/WD-XMLHttpRequest-
20080415

[XSLT]
James Clark. XSL Transformations (XSLT) Version 1.0. 16 November 1999. W3C
Recommendation. URL: http://www.w3.org/TR/1999/REC-xslt-19991116

Content Security Policy 1.0 https://www.w3.org/TR/2012/CR-CSP-20121115/

19 of 19 16/01/2021, 17:22

