
Content Security Policy Level 2
W3C Recommendation, 15 December 2016

This version:
https://www.w3.org/TR/2016/REC-CSP2-20161215/

Latest version:
https://www.w3.org/TR/CSP2/

Latest version in series:
https://www.w3.org/TR/CSP/

Editor's Draft:
https://w3c.github.io/webappsec-csp/

Previous Versions:
https://www.w3.org/TR/2016/PR-CSP2-20161108/

https://www.w3.org/TR/2015/CR-CSP2-20150721/

https://www.w3.org/TR/2015/CR-CSP2-20150219/

https://www.w3.org/TR/2014/WD-CSP2-20140703/

https://www.w3.org/TR/2014/WD-CSP11-20140211/

https://www.w3.org/TR/2012/CR-CSP-20121115/

Implementation Report
https://w3c.github.io/webappsec/implementation_reports/CSP2_implementation_report.html

Feedback:
public-webappsec@w3.org with subject line “[CSP2] … message topic …” (archives)

Issue Tracking:
GitHub

Editors:
Mike West (Google Inc.)

Adam Barth (Google Inc.)

Dan Veditz (Mozilla Corporation)

Former Editors:
Brandon Sterne (formerly of Mozilla Corporation)

Errata for this document are recorded as issues.

The English version of this specification is the only normative version. Non-normative translations

may also be available.

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

1 of 64 16/01/2021, 17:16

Copyright © 2016 W3C® (MIT, ERCIM, Keio, Beihang). W3C liability, trademark and document use rules apply.

Abstract

This document defines a policy language used to declare a set of content restrictions for a web

resource, and a mechanism for transmitting the policy from a server to a client where the policy is

enforced.

Status of this document

This section describes the status of this document at the time of its publication. Other documents may

supersede this document. A list of current W3C publications and the latest revision of this technical

report can be found in the W3C technical reports index at https://www.w3.org/TR/.

Errata for this document are recorded as issues. The latest CSP editors' draft shows current proposed

resolution of errata in situ.

This document was published by the Web Application Security Working Group as a Recommendation.

The Working Group expects CSP Level 3 to obsolete this Recommendation. If you wish to make

comments regarding this document, please raise an issue in the specification's issue tracker. Historical

comments may also be found in the working group's email archives.

Please see the Working Group's implementation report.

This document has been reviewed by W3C Members, by software developers, and by other W3C

groups and interested parties, and is endorsed by the Director as a W3C Recommendation. It is a

stable document and may be used as reference material or cited from another document. W3C's role in

making the Recommendation is to draw attention to the specification and to promote its widespread

deployment. This enhances the functionality and interoperability of the Web.

This document was produced by a group operating under the 5 February 2004 W3C Patent Policy.

W3C maintains a public list of any patent disclosures made in connection with the deliverables of the

group; that page also includes instructions for disclosing a patent. An individual who has actual

knowledge of a patent which the individual believes contains Essential Claim(s) must disclose the

information in accordance with section 6 of the W3C Patent Policy.

This document is governed by the 1 September 2015 W3C Process Document.

W3C expects the functionality specified in this Recommendation will not be affected by changes to

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

2 of 64 16/01/2021, 17:16

1

1.1

2

2.1

2.2

2.3

2.4

3

3.1

3.2

3.3

3.4

3.5

4

4.1

4.1.1

4.2

4.2.1

4.2.2

4.2.2.1

4.2.2.2

4.2.2.3

4.2.3

4.2.4

4.2.5

referenced documents at an earlier process stage than Proposed Recommendation. Many of the

referenced specifications are at Working Draft status; implementors of CSP2 should be aware that the

mechanisms cited have content security implications and should track the progress of those

specifications as they are included in CSP implementations.

Development of CSP Level 2 concluded in 2014. Implementors of user-agents are strongly

encouraged to base their work on Content Security Policy Level 3.

Table of Contents

Introduction

Changes from Level 1

Key Concepts and Terminology

Terms defined by this specification

Terms defined by reference

Relevant Concepts from HTML

Grammatical Concepts

Policy Delivery

Content-Security-Policy Header Field

Content-Security-Policy-Report-Only Header Field

HTML meta Element

Enforcing multiple policies.

Policy applicability

Syntax and Algorithms

Policy Syntax

Parsing Policies

Source List Syntax

Parsing Source Lists

Matching Source Expressions

Security Considerations for GUID URL schemes

Path Matching

Paths and Redirects

The nonce attribute

Valid Nonces

Valid Hashes

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

3 of 64 16/01/2021, 17:16

4.3

4.3.1

4.3.2

4.4

5

5.1

5.2

6

6.1

6.2

6.3

7

7.1

7.2

7.2.1

7.2.2

7.3

7.3.1

7.4

7.4.1

7.5

7.6

7.7

7.7.1

7.7.2

7.8

7.9

7.10

7.11

7.12

7.12.1

7.12.2

7.13

7.14

7.14.1

Media Type List Syntax

Parsing

Matching

Reporting

Processing Model

Workers

srcdoc IFrames

Script Interfaces

SecurityPolicyViolationEvent Interface

SecurityPolicyViolationEventInit Interface

Firing Violation Events

Directives

base-uri

child-src

Nested Browsing Contexts

Workers

connect-src

Usage

default-src

Usage

font-src

form-action

frame-ancestors

Relation to X-Frame-Options

Multiple Host Source Values

frame-src

img-src

media-src

object-src

plugin-types

Usage

Predeclaration of expected media types

report-uri

sandbox

Sandboxing and Workers

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

4 of 64 16/01/2021, 17:16

7.14.2

7.15

7.15.1

7.15.2

7.16

7.16.1

7.16.2

8

8.1

8.2

9

9.1

9.2

10

10.1

11

11.1

11.2

12

Usage

script-src

Nonce usage for script elements

Hash usage for script elements

style-src

Nonce usage for style elements

Hash usage for style elements

Examples

Sample Policy Definitions

Sample Violation Report

Security Considerations

Cascading Style Sheet (CSS) Parsing

Redirect Information Leakage

Implementation Considerations

Processing Complications

IANA Considerations

Content-Security-Policy

Content-Security-Policy-Report-Only

Acknowledgements

Conformance

Document conventions

Conformant Algorithms

Conformance Classes

Index

Terms defined by this specification

Terms defined by reference

References

Normative References

Informative References

IDL Index

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

5 of 64 16/01/2021, 17:16

1. Introduction

This section is not normative.

This document defines Content Security Policy, a mechanism web applications can use to mitigate a

broad class of content injection vulnerabilities, such as cross-site scripting (XSS). Content Security

Policy is a declarative policy that lets the authors (or server administrators) of a web application

inform the client about the sources from which the application expects to load resources.

To mitigate XSS attacks, for example, a web application can declare that it only expects to load script

from specific, trusted sources. This declaration allows the client to detect and block malicious scripts

injected into the application by an attacker.

Content Security Policy (CSP) is not intended as a first line of defense against content injection

vulnerabilities. Instead, CSP is best used as defense-in-depth, to reduce the harm caused by content

injection attacks. As a first line of defense against content injection, server operators should validate

their input and encode their output.

There is often a non-trivial amount of work required to apply CSP to an existing web application. To

reap the greatest benefit, authors will need to move all inline script and style out-of-line, for example

into external scripts, because the user agent cannot determine whether an inline script was injected by

an attacker.

To take advantage of CSP, a web application opts into using CSP by supplying a Content-Security-

Policy HTTP header. Such policies apply to the current resource representation only. To supply a

policy for an entire site, the server needs to supply a policy with each resource representation.

1.1. Changes from Level 1

This document describes an evolution of the Content Security Policy specification. Level 2 makes two

breaking changes from Level 1, and adds support for a number of new directives and capabilities

which are summarized below:

1. The following changes are backwards incompatible with the majority of user agent’s

implementations of CSP 1:

1. The path component of a source expression is now ignored if the resource being loaded is

the result of a redirect, as described in §4.2.2.3 Paths and Redirects.

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

6 of 64 16/01/2021, 17:16

Note: Paths are technically new in CSP2, but they were already implemented in many

user agents before this revision of CSP was completed, so noting the change here seems

reasonable.

2. A protected resource’s ability to load Workers is now controlled via child-src rather than

script-src.

3. Workers now have their own policy, separate from the protected resource which loaded

them. This is described in §5.1 Workers.

2. The following directives are brand new in this revision:

1. base-uri controls the protected resource’s ability to specify the document base URL.

2. child-src deprecates and replaces frame-src, controlling the protected resource’s ability

to embed frames, and to load Workers.

3. form-action controls the protected resource’s ability to submit forms.

4. frame-ancestors controls the protected resource’s ability be embedded in other documents.

It is meant to supplant the X-Frame-Options HTTP request header.

5. plugin-types controls the protected resource’s ability to load specific types of plugins.

3. Individual inline scripts and stylesheets may be whitelisted via nonces (as described in §4.2.4

Valid Nonces) and hashes (as described in §4.2.5 Valid Hashes).

4. A SecurityPolicyViolationEvent is fired upon violations, as described in §6.3 Firing

Violation Events.

5. A number of new fields were added to violation reports (both those POSTED via report-uri,

and those handed to the DOM via SecurityPolicyViolationEvent events. These include

effectiveDirective, statusCode, sourceFile, lineNumber, and columnNumber.

6. Certain flags present in the sandbox directive now affect Worker creation, as described in §7.14.1

Sandboxing and Workers.

2. Key Concepts and Terminology

2.1. Terms defined by this specification

security policy
security policy directive
security policy directive name
security policy directive value

A security policy refers to both a set of security preferences for restrictions within which content

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

7 of 64 16/01/2021, 17:16

can operate, and to a fragment of text that codifies or transmits these preferences. For example,

the following string is a policy which restricts script and object content:

script-src 'self'; object-src 'none'

Security policies contain a set of security policy directives (script-src and object-src in the

example above), each responsible for declaring the restrictions for a particular resource type, or

manipulating a specific aspect of the policy’s restrictions. The list of directives defined by this

specification can be found in §7 Directives.

Each directives has a name and a value; a detailed grammar can be found in §4 Syntax and

Algorithms.

protected resource
A security policy is applied by a user agent to a specific resource representation, known as the

protected resource. See §3 Policy Delivery for details regarding the mechanisms by which

policies may be applied to a protected resource.

2.2. Terms defined by reference

globally unique identifier
Defined in Section 2.3 of the Origin specification. [RFC6454]

NOTE: URLs which do not use hierarchical elements as naming authorities (data:, for

instance) have origins which are globally unique identifiers.

HTTP 200 response
Defined in Section 6.3.1 of HTTP/1.1 -- Semantics and Content. [RFC7231]

JSON object
JSON stringification

Defined in the JSON specification. [RFC4627]

origin
Defined by the Origin specification. [RFC6454]

resource representation
Defined in Section 3 of HTTP/1.1 -- Semantics and Content. [RFC7231]

URL
Defined by [URL].

SHA-256
SHA-384

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

8 of 64 16/01/2021, 17:16

SHA-512
These digest algorithms are defined by the NIST. [FIPS180]

2.3. Relevant Concepts from HTML

The applet, audio, embed, iframe, img, link, object, script, source, track, and video are

defined in [HTML5].

The terms auxiliary browsing contexts, opener browsing context, and nested browsing contexts are

defined in the HTML5 specification. [HTML5]

A plugin is defined in the HTML5 specification. [HTML5]

The <<@font-face>> Cascading Style Sheets (CSS) rule is defined in the CSS Fonts Module Level 3

specification. [CSS3-FONTS]

The XMLHttpRequest object is defined in the XMLHttpRequest specification. [XMLHTTPREQUEST]

The WebSocket object is defined in the WebSocket specification. [WEBSOCKETS]

The EventSource object is defined in the EventSource specification. [EVENTSOURCE]

The runs a worker algorithm is defined in the Web Workers spec. [WORKERS]

The term callable refers to an object whose interface has one or more callers as defined in the Web

IDL specification [WEBIDL].

2.4. Grammatical Concepts

The Augmented Backus-Naur Form (ABNF) notation used in this document is specified in RFC5234.

[ABNF]

This document also uses the ABNF extension "#rule" as defined in Section 7 of HTTP/1.1 -- Message

Syntax and Routing. [RFC7230]

The following core rules are included by reference, as defined in Appendix B.1 of [ABNF]: ALPHA

(letters), DIGIT (decimal 0-9), WSP (white space) and VCHAR (printing characters).

3. Policy Delivery

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

9 of 64 16/01/2021, 17:16

The server delivers a policy to the user agent via an HTTP response header (defined in §3.1 Content-

Security-Policy Header Field and §3.2 Content-Security-Policy-Report-Only Header Field) or an

HTML meta element (defined in §3.3 HTML meta Element).

3.1. Content-Security-Policy Header Field

The Content-Security-Policy header field is the preferred mechanism for delivering a policy. The

grammar is as follows:

"Content-Security-Policy:" 1#policy-token

For example, a response might include the following header field:

Content-Security-Policy: script-src 'self'

A server MUST NOT send more than one HTTP header field named Content-Security-Policy with

a given resource representation.

A server MAY send different Content-Security-Policy header field values with different

representations of the same resource or with different resources.

Upon receiving an HTTP response containing at least one Content-Security-Policy header field,

the user agent MUST enforce each of the policies contained in each such header field.

3.2. Content-Security-Policy-Report-Only Header Field

The Content-Security-Policy-Report-Only header field lets servers experiment with policies by

monitoring (rather than enforcing) a policy. The grammar is as follows:

"Content-Security-Policy-Report-Only:" 1#policy-token

For example, server operators might wish to develop their security policy iteratively. The operators

can deploy a report-only policy based on their best estimate of how their site behaves:

Content-Security-Policy-Report-Only: script-src 'self';

report-uri /csp-report-endpoint/

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

10 of 64 16/01/2021, 17:16

If their site violates this policy the user agent will send violation reports to the URL specified in the

policy’s report-uri directive, but allow the violating resources to load regardless. Once a site has

confidence that the policy is appropriate, they can start enforcing the policy using the Content-

Security-Policy header field.

A server MUST NOT send more than one HTTP header field named Content-Security-Policy-

Report-Only with a given resource representation.

A server MAY send different Content-Security-Policy-Report-Only header field values with

different representations of the same resource or with different resources.

Upon receiving an HTTP response containing at least one Content-Security-Policy-Report-Only

header field, the user agent MUST monitor each of the policies contained in each such header field.

Note: The Content-Security-Policy-Report-Only header is not supported inside a meta

element.

3.3. HTML meta Element

The server MAY supply policy via one or more HTML meta elements with http-equiv attributes that

are an ASCII case-insensitive match for the string "Content-Security-Policy". For example:

<meta http-equiv="Content-Security-Policy" content="script-src 'self'">

Add the following entry to the pragma directives for the meta element:

Content security policy (http-equiv="content-security-policy")

1. If the Document’s head element is not an ancestor of the meta element, abort these steps.

2. If the meta element lacks a content attribute, abort these steps.

3. Let policy be the value of the content attribute of the meta element.

4. Let directive-set be the result of parsing policy.

5. Remove all occurrences of report-uri, frame-ancestors, and sandbox directives from

directive-set.

Note: User agents are encouraged to issue a warning to developers if one or more of

these directives are included in a policy delivered via meta.

6. Enforce each of the directives in directive-set, as defined for each directive type.

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

11 of 64 16/01/2021, 17:16

Authors are strongly encouraged to place meta elements as early in the document as possible, because

policies in meta elements are not applied to content which precedes them. In particular, note that

resources fetched or prefetched using the Link HTTP response header field, and resources fetched or

prefetched using link and script elements which precede a meta-delivered policy will not be

blocked.

Note: A policy specified via a meta element will be enforced along with any other policies active

for the protected resource, regardless of where they’re specified. The general impact of enforcing

multiple policies is described in §3.4 Enforcing multiple policies..

Note: Modifications to the content attribute of a meta element after the element has been parsed

will be ignored.

Note: The Content-Security-Policy-Report-Only header is not supported inside a meta

element.

3.4. Enforcing multiple policies.

This section is not normative.

The above sections note that when multiple policies are present, each must be enforced or reported,

according to its type. An example will help clarify how that ought to work in practice. The behavior of

an XMLHttpRequest might seem unclear given a site that, for whatever reason, delivered the following

HTTP headers:

Content-Security-Policy: default-src 'self' http://example.com http://example.net;

connect-src 'none';

Content-Security-Policy: connect-src http://example.com/;

script-src http://example.com/

Is a connection to example.com allowed or not? The short answer is that the connection is not

allowed. Enforcing both policies means that a potential connection would have to pass through both

unscathed. Even though the second policy would allow this connection, the first policy contains

connect-src 'none', so its enforcement blocks the connection. The impact is that adding additional

policies to the list of policies to enforce can only further restrict the capabilities of the protected

resource.

To demonstrate that further, consider a script tag on this page. The first policy would lock scripts

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

12 of 64 16/01/2021, 17:16

down to 'self', http://example.com and http://example.net via the default-src directive. The

second, however, would only allow script from http://example.com/. Script will only load if it

meets both policy’s criteria: in this case, the only origin that can match is http://example.com, as

both policies allow it.

3.5. Policy applicability

This section is not normative.

Policies are associated with an protected resource, and enforced or monitored for that resource. If a

resource does not create a new execution context (for example, when including a script, image, or

stylesheet into a document), then any policies delivered with that resource are discarded without

effect. Its execution is subject to the policy or policies of the including context. The following table

outlines examples of these relationships:

Resource Type What policy applies?

Top-level

Contexts

HTML as a new, top-level

browsing context

The policy delivered with the resource

SVG, as a top-level

document

Policy delivered with the resource

Embedded

Contexts

Any resource included via

iframe, object, or embed

The policy of the embedding resource controls

what may be embedded. The embedded resource,

however, is controlled by the policy delivered with

the resource, or the policy of the embedding

resource if the embedded resource is a globally

unique identifier (or a srcdoc frame).

SVG, as an embedded

document

The policy delivered with the resource, or policy of

the creating context if created from a globally

unique identifier.

JavaScript, as a Worker,

Shared Worker or Service

Worker

The policy delivered with the resource, or policy of

the creating context if created from a globally

unique identifier

Subresources SVG, inlined via svg Policy of the including context

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

13 of 64 16/01/2021, 17:16

Resource Type What policy applies?

SVG, as a resource

document

Policy of the including context

HTML via

XMLHttpRequest

Policy of the context that performed the fetch

Image via img element Policy of the including context

JavaScript via a script

element

Policy of the including context

SVG, via img No policy; should be just as safe as JPG

SVG, as a WebFont No policy; should be just as safe as WOFF

4. Syntax and Algorithms

4.1. Policy Syntax

A Content Security Policy consists of a U+003B SEMICOLON (;) delimited list of directives. Each

directive consists of a directive name and (optionally) a directive value, defined by the following

ABNF:

policy-token = [directive-token *(";" [directive-token])]

directive-token = *WSP [directive-name [WSP directive-value]]

directive-name = 1*(ALPHA / DIGIT / "-")

directive-value = *(WSP / <VCHAR except ";" and ",">)

4.1.1. Parsing Policies

To parse the policy policy, the user agent MUST use an algorithm equivalent to the following:

1. Let the set of directives be the empty set.

2. For each non-empty token returned by strictly splitting the string policy on the character U+003B

SEMICOLON (;):

1. Skip whitespace.

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

14 of 64 16/01/2021, 17:16

2. Collect a sequence of characters that are not space characters. The collected characters are

the directive name.

3. If there are characters remaining in token, skip ahead exactly one character (which must be a

space character).

4. The remaining characters in token (if any) are the directive value.

5. If the set of directives already contains a directive whose name is a case insensitive match

for directive name, ignore this instance of the directive and continue to the next token.

6. Add a directive to the set of directives with name directive name and value directive value.

3. Return the set of directives.

4.2. Source List Syntax

Many CSP directives use a value consisting of a source list, defined in the ABNF grammar below.

Each source expression in the source list represents a location from which content of the specified

type can be retrieved. For example, the source expression 'none' represents the empty set of URLs,

and the source expression 'unsafe-inline' represents content supplied inline in the resource itself.

source-list = *WSP [source-expression *(1*WSP source-expression) *WSP]

 / *WSP "'none'" *WSP

source-expression = scheme-source / host-source / keyword-source / nonce-source / hash-source

scheme-source = scheme-part ":"

host-source = [scheme-part "://"] host-part [port-part] [path-part]

keyword-source = "'self'" / "'unsafe-inline'" / "'unsafe-eval'"

base64-value = 1*(ALPHA / DIGIT / "+" / "/")*2("=")

nonce-value = base64-value

hash-value = base64-value

nonce-source = "'nonce-" nonce-value "'"

hash-algo = "sha256" / "sha384" / "sha512"

hash-source = "'" hash-algo "-" hash-value "'"

scheme-part = <scheme production from RFC 3986, section 3.1>

host-part = "*" / ["*."] 1*host-char *("." 1*host-char)

host-char = ALPHA / DIGIT / "-"

path-part = <path production from RFC 3986, section 3.3>

port-part = ":" (1*DIGIT / "*")

If the policy contains a nonce-source expression, the server MUST generate a fresh value for the

nonce-value directive at random and independently each time it transmits a policy. The generated

value SHOULD be at least 128 bits long (before encoding), and generated via a cryptographically

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

15 of 64 16/01/2021, 17:16

secure random number generator. This requirement ensures that the nonce-value is difficult for an

attacker to predict.

Note: Using a nonce to whitelist inline script or style is less secure than not using a nonce, as

nonces override the restrictions in the directive in which they are present. An attacker who can

gain access to the nonce can execute whatever script they like, whenever they like. That said,

nonces provide a substantial improvement over 'unsafe-inline' when layering a content

security policy on top of old code. When considering 'unsafe-inline', authors are encouraged

to consider nonces (or hashes) instead.

The host-char production intentionally contains only ASCII characters; internationalized domain

names cannot be entered directly into a policy string, but instead MUST be Punycode-encoded

[RFC3492]. For example, the domain üüüüüü.de would be encoded as xn--tdaaaaaa.de.

NOTE: Though IP addresses do match the grammar above, only 127.0.0.1 will actually match a

URL when used in a source expression (see §4.2.2 Matching Source Expressions for details). The

security properties of IP addresses are suspect, and authors ought to prefer hostnames to IP

addresses whenever possible.

4.2.1. Parsing Source Lists

To parse a source list source list, the user agent MUST use an algorithm equivalent to the following:

1. Strip leading and trailing whitespace from source list.

2. If source list is an ASCII case-insensitive match for the string 'none' (including the quotation

marks), return the empty set.

3. Let set of source expressions be the empty set.

4. For each token returned by splitting source list on spaces, if the token matches the grammar for

source-expression, add the token to the set of source expressions.

5. Return the set of source expressions.

Note: Characters like U+003B SEMICOLON (;) and U+002C COMMA (,) cannot appear in

source expressions directly: if you’d like to include these characters in a source expression, they

must be percent encoded as %3B and %2C respectively.

4.2.2. Matching Source Expressions

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

16 of 64 16/01/2021, 17:16

A URL url is said to match a source expression for a protected resource if the following algorithm

returns does match:

1. Let url be the result of processing the URL through the URL parser.

2. If the source expression a consists of a single U+002A ASTERISK character (*), and url’s

scheme is not one of blob, data, filesystem, then return does match.

3. If the source expression matches the grammar for scheme-source:

1. If url’s scheme is an ASCII case-insensitive match for the source expression’s scheme-part,

return does match.

2. Otherwise, return does not match.

4. If the source expression matches the grammar for host-source:

1. If url’s host is null, return does not match.

2. Let url-scheme, url-host, and url-port be the scheme, host, and port of url’s origin,

respectively.

Note: If url doesn’t specify a port, then its origin’s port will be the default port for url’s

scheme.

3. Let url-path-list be the path of url.

4. If the source expression has a scheme-part that is not a case insensitive match for url-

scheme, then return does not match.

5. If the source expression does not have a scheme, return does not match if any of the

following are true:

1. the scheme of the protected resource’s URL is a case insensitive match for HTTP, and

url-scheme is not a case insensitive match for either HTTP or HTTPS

2. the scheme of the protected resource’s URL is not a case insensitive match for HTTP,

and url-scheme is not a case insensitive match for the scheme of the protected

resource’s URL.

6. If the first character of the source expression’s host-part is an U+002A ASTERISK

character (*) and the remaining characters, including the leading U+002E FULL STOP

character (.), are not a case insensitive match for the rightmost characters of url-host, then

return does not match.

7. If the first character of the source expression’s host-part is not an U+002A ASTERISK

character (*) and url-host is not a case insensitive match for the source expression’s host-

part, then return does not match.

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

17 of 64 16/01/2021, 17:16

8. If the source expression’s host-part matches the IPv4address production from

[RFC3986], and is not 127.0.0.1, or is an IPv6 address, return does not match.

Note: A future version of this specification may allow literal IPv6 and IPv4 addresses,

depending on usage and demand. Given the weak security properties of IP addresses in

relation to named hosts, however, authors are encouraged to prefer the latter whenever

possible.

9. If the source expression does not contain a port-part and url-port is not the default port for

url-scheme, then return does not match.

10. If the source expression does contain a port-part, then return does not match if both of the

following are true:

1. port-part does not contain an U+002A ASTERISK character (*)

2. port-part does not represent the same number as url-port

11. If the source expression contains a non-empty path-part, and the URL is not the result of a

redirect, then:

1. Let exact-match be true if the final character of path-part is not the U+002F

SOLIDUS character (/), and false otherwise.

2. Let source-expression-path-list be the result of splitting path-part on the U+002F

SOLIDUS character (/).

3. If source-expression-path-list’s length is greater than url-path-list’s length, return does

not match.

4. For each entry in source-expression-path-list:

1. Percent decode entry.

2. Percent decode the first item in url-path-list.

3. If entry is not an ASCII case-insensitive match for the first item in url-path-list,

return does not match.

4. Pop the first item in url-path-list off the list.

5. If exact-match is true, and url-path-list is not empty, return does not match.

12. Otherwise, return does match.

5. If the source expression is a case insensitive match for 'self' (including the quotation marks),

then:

1. Return does match if the origin of url matches the origin of protected resource’s URL.

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

18 of 64 16/01/2021, 17:16

Note: This includes IP addresses. That is, a document at https://111.111.111.111/

with a policy of img-src 'self' can load the image https://111.111.111.111

/image.png, as the origins match.

6. Otherwise, return does not match.

Note: This algorithm treats the URLs https://example.com/ and https://example.com./ as

non-matching. This is consistent with browser behavior which treats documents served from these

URLs as existing in distinct origins.

A URL url is said to match a source list for protected resource if at least one source expression in the

set of source expressions obtained by parsing the source list matches url for protected resource.

Note: No URLs match an empty set of source expressions, such as the set obtained by parsing the

source list 'none'.

4.2.2.1. Security Considerations for GUID URL schemes

This section is not normative.

As defined above, special URL schemes that refer to specific pieces of unique content, such as "data:",

"blob:" and "filesystem:" are excluded from matching a policy of * and must be explicitly listed.

Policy authors should note that the content of such URLs is often derived from a response body or

execution in a Document context, which may be unsafe. Especially for the default-src and script-

src directives, policy authors should be aware that allowing "data:" URLs is equivalent to unsafe-

inline and allowing "blob:" or "filesystem:" URLs is equivalent to unsafe-eval.

4.2.2.2. Path Matching

This section is not normative.

The rules for matching source expressions that contain paths are simpler than they look: paths that end

with the '/' character match all files in a directory and its subdirectories. Paths that do not end with

the '/' character match only one specific file. A few examples should make this clear:

1. The source expression example.com has no path, and therefore matches any file served from that

host.

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

19 of 64 16/01/2021, 17:16

2. The source expression example.com/scripts/ matches any file in the scripts directory of

example.com, and any of its subdirectories. For example, both https://example.com/scripts

/file.js and https://example.com/scripts/js/file.js would match.

3. The source expression example.com/scripts/file.js matches only the file named file.js in

the scripts directory of example.com.

4. Likewise, the source expression example.com/js matches only the file named js. In particular,

note that it would not match files inside a directory named js. Files like example.com/js

/file.js would be matched only if the source expression ended with a trailing "/", as in

example.com/js/.

Note: Query strings have no impact on matching: the source expression example.com/file

matches all of https://example.com/file, https://example.com/file?key=value,

https://example.com/file?key=notvalue, and https://example.com

/file?notkey=notvalue.

4.2.2.3. Paths and Redirects

To avoid leaking path information cross-origin (as discussed in Egor Homakov’s Using Content-

Security-Policy for Evil), the matching algorithm ignores the path component of a source expression if

the resource being loaded is the result of a redirect. For example, given a page with an active policy of

img-src example.com not-example.com/path:

Directly loading https://not-example.com/not-path would fail, as it doesn’t match the

policy.

Directly loading https://example.com/redirector would pass, as it matches example.com.

Assuming that https://example.com/redirector delivered a redirect response pointing to

https://not-example.com/not-path, the load would succeed, as the initial URL matches

example.com, and the redirect target matches not-example.com/path if we ignore its path

component.

This restriction reduces the granularity of a document’s policy when redirects are in play, which isn’t

wonderful, but given that we certainly don’t want to allow brute-forcing paths after redirects, it seems

a reasonable compromise.

The relatively long thread "Remove paths from CSP?" from public-webappsec@w3.org has more

detailed discussion around alternate proposals.

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

20 of 64 16/01/2021, 17:16

4.2.3. The nonce attribute

Nonce sources require a new nonce attribute to be added to both script and style elements.

partial interface HTMLScriptElement {

 attribute DOMString nonce;

};

nonce, of type DOMString
This attribute reflects the value of the element’s nonce content attribute.

partial interface HTMLStyleElement {

 attribute DOMString nonce;

};

nonce, of type DOMString
This attribute reflects the value of the element’s nonce content attribute.

4.2.4. Valid Nonces

An element has a valid nonce for a set of source expressions if the value of the element’s nonce

attribute after stripping leading and trailing whitespace is a case-sensitive match for the nonce-value

component of at least one nonce-source expression in set of source expressions.

4.2.5. Valid Hashes

An element’s content is the script block’s source for script elements, or the value of the element’s

textContent IDL attribute for non-script elements such as style.

The digest of element’s content for is the result of applying an algorithm to the element’s content.

To determine whether element has a valid hash for a set of source expressions, execute the following

steps:

1. Let hashes be a list of all hash-source expressions in set of source expressions.

2. For each hash in hashes:

1. Let algorithm be:

SHA-256 if the hash-algo component of hash is an ASCII case-insensitive match for

the string "sha256"

SHA-384 if the hash-algo component of hash is an ASCII case-insensitive match for

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

21 of 64 16/01/2021, 17:16

the string "sha384"

SHA-512 if the hash-algo component of hash is an ASCII case-insensitive match for

the string "sha512"

2. Let expected be the hash-value component of hash.

3. Let actual be the base64 encoding of the binary digest of element’s content using the

algorithm algorithm.

4. If actual is a case-sensitive match for expected, return true and abort these steps.

3. Return false.

Note: If an element has an invalid hash, it would be helpful if the user agent reported the failure to

the author by adding a warning message containing the actual hash value.

4.3. Media Type List Syntax

The plugin-types directive uses a value consisting of a media type list.

Each media type in the media type list represents a specific type of resource that can be retrieved and

used to instantiate a plugin in the protected resource.

media-type-list = media-type *(1*WSP media-type)

media-type = <type from RFC 2045> "/" <subtype from RFC 2045>

4.3.1. Parsing

To parse a media type list media type list, the user agent MUST use an algorithm equivalent to the

following:

1. Let the set of media types be the empty set.

2. For each token returned by splitting media type list on spaces, if the token matches the grammar

for media-type, add the token to the set of media types. Otherwise ignore the token.

3. Return the set of media types.

4.3.2. Matching

A media type matches a media type list if, and only if, the media type is an ASCII case-insensitive

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

22 of 64 16/01/2021, 17:16

match for at least one token in the set of media types obtained by parsing the media type list.

4.4. Reporting

To strip uri for reporting, the user agent MUST use an algorithm equivalent to the following:

1. If the origin of uri is a globally unique identifier (for example, uri has a scheme of data, blob, or

filesystem), then abort these steps, and return the ASCII serialization of uri’s scheme.

2. If the origin of uri is not the same as the origin of the protected resource, then abort these steps,

and return the ASCII serialization of uri’s origin.

3. Return uri, with any fragment component removed.

To generate a violation report object, the user agent MUST use an algorithm equivalent to the

following:

1. Prepare a JSON object violation with the following keys and values:
blocked-uri

The originally requested URL of the resource that was prevented from loading, stripped for

reporting, or the empty string if the resource has no URL (inline script and inline style, for

example).

document-uri
The address of the protected resource, stripped for reporting.

effective-directive
The name of the policy directive that was violated. This will contain the directive whose

enforcement triggered the violation (e.g. "script-src") even if that directive does not

explicitly appear in the policy, but is implicitly activated via the default-src directive.

original-policy
The original policy, as received by the user agent.

referrer
The referrer attribute of the protected resource, or the empty string if the protected resource

has no referrer.

status-code
The status-code of the HTTP response that contained the protected resource, if the

protected resource was obtained over HTTP. Otherwise, the number 0.

violated-directive
The policy directive that was violated, as it appears in the policy. This will contain the

default-src directive in the case of violations caused by falling back to the default sources

when enforcing a directive.

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

23 of 64 16/01/2021, 17:16

2. If a specific line or a specific file can be identified as the cause of the violation (for example,

script execution that violates the script-src directive), the user agent MAY add the following

keys and values to violation:
source-file

The URL of the resource where the violation occurred, stripped for reporting.

line-number
The line number in source-file on which the violation occurred.

column-number
The column number in source-file on which the violation occurred.

3. Return violation.

Note: blocked-uri will not contain the final location of a resource that was blocked after one or

more redirects. It instead will contain only the location that the protected resource requested,

before any redirects were followed.

To send violation reports, the user agent MUST use an algorithm equivalent to the following:

1. Prepare a JSON object report object with a single key, csp-report, whose value is the result of

generating a violation report object.

2. Let report body be the JSON stringification of report object.

3. For each report URL in the set of report URLs:

1. If the user agent has already sent a violation report for the protected resource to report URL,

and that report contained an entity body that exactly matches report body, the user agent

MAY abort these steps and continue to the next report URL.

2. Queue a task to fetch report URL from the origin of the protected resource, with the

synchronous flag not set, using HTTP method POST, with a Content-Type header field of

application/csp-report, and an entity body consisting of report body. If the origin of

report URL is not the same as the origin of the protected resource, the block cookies flag

MUST also be set. The user agent MUST NOT follow redirects when fetching this resource.

(Note: The user agent ignores the fetched resource.) The task source for these tasks is the

Content Security Policy task source.

To report a violation, the user agent MUST:

1. Fire a violation event at the protected resource’s Document.

2. If the set of report URLs is non-empty, send violation reports to each.

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

24 of 64 16/01/2021, 17:16

Note: This section of the specification should not be interpreted as limiting user agents' ability to

apply restrictions to violation reports in order to limit data leakage above and beyond what these

algorithms specify. For example, a user agent might offer users the option of disabling reporting

entirely.

5. Processing Model

To enforce a policy, the user agent MUST parse the policy and enforce each of the directives

contained in the policy, where the specific requirements for enforcing each directive are defined

separately for each directive (See §7 Directives, below).

Generally speaking, enforcing a directive prevents the protected resource from performing certain

actions, such as loading scripts from URLs other than those indicated in a source list. These

restrictions make it more difficult for an attacker to abuse an injection vulnerability in the resource

because the attacker will be unable to usurp the resource’s privileges that have been restricted in this

way.

Note: User agents may allow users to modify or bypass policy enforcement through user

preferences, bookmarklets, third-party additions to the user agent, and other such mechanisms.

To monitor a policy, the user agent MUST parse the policy and monitor each of the directives

contained in the policy.

Monitoring a directive does not prevent the protected resource from undertaking any actions. Instead,

any actions that would have been prevented by the directives are allowed, but a violation report is

generated and reported to the developer of the web application. Monitoring a policy is useful for

testing whether enforcing the policy will cause the web application to malfunction.

A server MAY cause user agents to monitor one policy while enforcing another policy by returning

both Content-Security-Policy and Content-Security-Policy-Report-Only header fields. For

example, if a server operator may wish to enforce one policy but experiment with a stricter policy, she

can monitor the stricter policy while enforcing the original policy. Once the server operator is satisfied

that the stricter policy does not break the web application, the server operator can start enforcing the

stricter policy.

If the user agent monitors or enforces a policy that does not contain any directives, the user agent

SHOULD report a warning message in the developer console.

If the user agent monitors or enforces a policy that contains an unrecognized directive, the user agent

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

25 of 64 16/01/2021, 17:16

SHOULD report a warning message in the developer console indicating the name of the unrecognized

directive.

5.1. Workers

Whenever a user agent runs a worker:

If the worker’s script’s origin is a globally unique identifier (for example, the worker’s script’s

URL has a scheme of data, blob, or filesystem), then:

If the user agent is enforcing a CSP policy for the owner document or parent worker, the

user agent MUST enforce the CSP policy for the worker.

If the user agent is monitoring a CSP policy for the owner document or parent worker, the

user agent MUST monitor the CSP policy for the worker.

Otherwise:

If the worker’s script is delivered with a Content-Security-Policy HTTP header

containing the value policy, the user agent MUST enforce policy for the worker.

If the worker’s script is delivered with a Content-Security-Policy-Report-Only HTTP

header containing the value policy, the user agent MUST monitor policy for the worker.

5.2. srcdoc IFrames

Whenever a user agent creates an iframe srcdoc document in a browsing context nested in the

protected resource, if the user agent is enforcing any policies for the protected resource, the user agent

MUST enforce those policies on the iframe srcdoc document as well.

Whenever a user agent creates an iframe srcdoc document in a browsing context nested in the

protected resource, if the user agent is monitoring any policies for the protected resource, the user

agent MUST monitor those policies on the iframe srcdoc document as well.

6. Script Interfaces

6.1. SecurityPolicyViolationEvent Interface

[Constructor(DOMString type, optional SecurityPolicyViolationEventInit eventInitDict

interface SecurityPolicyViolationEvent : Event {

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

26 of 64 16/01/2021, 17:16

 readonly attribute DOMString documentURI;

 readonly attribute DOMString referrer;

 readonly attribute DOMString blockedURI;

 readonly attribute DOMString violatedDirective;

 readonly attribute DOMString effectiveDirective;

 readonly attribute DOMString originalPolicy;

 readonly attribute DOMString sourceFile;

 readonly attribute DOMString statusCode;

 readonly attribute long lineNumber;

 readonly attribute long columnNumber;

};

documentURI, of type DOMString, readonly
Refer to the document-uri property of violation reports for a description of this property.

referrer, of type DOMString, readonly
Refer to the referrer property of violation reports for a description of this property.

blockedURI, of type DOMString, readonly
Refer to the blocked-uri property of violation reports for a description of this property.

violatedDirective, of type DOMString, readonly
Refer to the violated-directive property of violation reports for a description of this property.

effectiveDirective, of type DOMString, readonly
Refer to the effective-directive property of violation reports for a description of this

property.

originalPolicy, of type DOMString, readonly
Refer to the original-policy property of violation reports for a description of this property.

statusCode, of type DOMString, readonly
Refer to the status-code property of violation reports for a description of this property.

sourceFile, of type DOMString, readonly
Refer to the source-file property of violation reports for a description of this property.

lineNumber, of type long, readonly
Refer to the line-number property of violation reports for a description of this property.

columnNumber, of type long, readonly
Refer to the column-number property of violation reports for a description of this property.

6.2. SecurityPolicyViolationEventInit Interface

dictionary SecurityPolicyViolationEventInit : EventInit {

 DOMString documentURI;

 DOMString referrer;

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

27 of 64 16/01/2021, 17:16

 DOMString blockedURI;

 DOMString violatedDirective;

 DOMString effectiveDirective;

 DOMString originalPolicy;

 DOMString sourceFile;

 long lineNumber;

 long columnNumber;

};

documentURI, of type DOMString
Refer to the document-uri property of violation reports for a description of this property.

referrer, of type DOMString
Refer to the referrer property of violation reports for a description of this property.

blockedURI, of type DOMString
Refer to the blocked-uri property of violation reports for a description of this property.

violatedDirective, of type DOMString
Refer to the violated-directive property of violation reports for a description of this property.

effectiveDirective, of type DOMString
Refer to the effective-directive property of violation reports for a description of this

property.

originalPolicy, of type DOMString
Refer to the original-policy property of violation reports for a description of this property.

sourceFile, of type DOMString
Refer to the source-file property of violation reports for a description of this property.

lineNumber, of type long
Refer to the line-number property of violation reports for a description of this property.

columnNumber, of type long
Refer to the column-number property of violation reports for a description of this property.

6.3. Firing Violation Events

To fire a violation event, the user agent MUST use an algorithm equivalent to the following:

1. Let report object be the result of generating a violation report object.

2. Queue a task to fire an event named securitypolicyviolation using the

SecurityPolicyViolationEvent interface with the following initializations:

blockedURI MUST be initialized to the value of report object’s blocked-uri key.

documentURI MUST be initialized to the value of report object’s document-uri key.

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

28 of 64 16/01/2021, 17:16

effectiveDirective MUST be initialized to the value of report object’s effective-

directive key.

originalPolicy MUST be initialized to the value of report object’s original-policy key.

referrer MUST be initialized to the value of report object’s referrer key.

violatedDirective MUST be initialized to the value of report object’s violated-

directive key.

sourceFile MUST be initialized to the value of report object’s source-file key.

lineNumber MUST be initialized to the value of report object’s line-number key.

columnNumber MUST be initialized to the value of report object’s column-number key.

The task source for these tasks is the Content Security Policy task source.

7. Directives

This section describes the content security policy directives introduced in this specification. Directive

names are case insensitive.

In order to protect against Cross-Site Scripting (XSS), web application authors SHOULD include:

both the script-src and object-src directives, or

include a default-src directive, which covers both scripts and plugins.

In either case, authors SHOULD NOT include either 'unsafe-inline' or data: as valid sources in

their policies. Both enable XSS attacks by allowing code to be included directly in the document

itself; they are best avoided completely.

7.1. base-uri

The base-uri directive restricts the URLs that can be used to specify the document base URL. The

syntax for the name and value of the directive are described by the following ABNF grammar:

directive-name = "base-uri"

directive-value = source-list

The term allowed base URLs refers to the result of parsing the base-uri directive’s value as a source

list.

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

29 of 64 16/01/2021, 17:16

Note: base-uri does not fall back to the default sources.

Step 4 of the algorithm defined in HTML5 to obtain a document’s base URL MUST be changed to:

4. If the previous step was not successful, or the result of the previous step does not match the

allowed base URLs for the protected resource, then the document base URL is fallback base

URL. Otherwise, it is the result of the previous step.

7.2. child-src

The child-src directive governs the creation of nested browsing contexts as well as Worker

execution contexts. The syntax for the name and value of the directive are described by the following

ABNF grammar:

directive-name = "child-src"

directive-value = source-list

The term allowed child sources refers to the result of parsing the child-src directive’s value as a

source list if a child-src directive is explicitly specified, and otherwise to the default sources.

7.2.1. Nested Browsing Contexts

To enforce the child-src directive the user agent MUST enforce the frame-src directive.

7.2.2. Workers

Whenever the user agent fetches a URL while processing the Worker or SharedWorker constructors

[WORKERS], the user agent MUST act as if there was a fatal network error and no resource was

obtained, and report a violation if the URL does not match the allowed child sources for the protected

resource.

7.3. connect-src

The connect-src directive restricts which URLs the protected resource can load using script

interfaces. The syntax for the name and value of the directive are described by the following ABNF

grammar:

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

30 of 64 16/01/2021, 17:16

directive-name = "connect-src"

directive-value = source-list

The term allowed connection targets refers to the result of parsing the connect-src directive’s value

as a source list if the policy contains an explicit connect-src directive, or otherwise to the default

sources.

Whenever the user agent fetches a URL in the course of one of the following activities, if the URL

does not match the allowed connection targets for the protected resource, the user agent MUST act as

if there was a fatal network error and no resource was obtained, and report a violation:

Processing the send() method of an XMLHttpRequest object.

Processing the WebSocket constructor.

Processing the EventSource constructor.

Pinging an endpoint during hyperlink auditing.

Sending a beacon via the sendBeacon() method [BEACON]

7.3.1. Usage

This section is not normative.

JavaScript offers a few mechanisms that directly connect to an external server to send or receive

information. EventSource maintains an open HTTP connection to a server in order to receive push

notifications, WebSockets open a bidirectional communication channel between your browser and a

server, and XMLHttpRequest makes arbitrary HTTP requests on your behalf. These are powerful APIs

that enable useful functionality, but also provide tempting avenues for data exfiltration.

The connect-src directive allows you to ensure that these sorts of connections are only opened to

origins you trust. Sending a policy that defines a list of source expressions for this directive is

straightforward. For example, to limit connections to only example.com, send the following header:

Content-Security-Policy: connect-src example.com

All of the following will fail with the preceding directive in place:

new WebSocket("wss://evil.com/");

(new XMLHttpRequest()).open("GET", "https://evil.com/", true);

new EventSource("https://evil.com");

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

31 of 64 16/01/2021, 17:16

7.4. default-src

The default-src directive sets a default source list for a number of directives. The syntax for the

name and value of the directive are described by the following ABNF grammar:

directive-name = "default-src"

directive-value = source-list

Let the default sources be the result of parsing the default-src directive’s value as a source list if a

default-src directive is explicitly specified, and otherwise the U+002A ASTERISK character (*).

To enforce the default-src directive, the user agent MUST enforce the following directives:

child-src

connect-src

font-src

img-src

media-src

object-src

script-src

style-src

If not specified explicitly in the policy, the directives listed above will use the default sources as their

source list.

7.4.1. Usage

This section is not normative.

default-src, as the name implies, serves as a default source list which the other source list-style

directives will use as a fallback if they’re not otherwise explicitly set. That is, consider the following

policy declaration:

Content-Security-Policy: default-src 'self'

Under this policy, fonts, frames, images, media, objects, scripts, and styles will all only load from the

same origin as the protected resource, and connections will only be made to the same origin. Adding a

more specific declaration to the policy would completely override the default source list for that

resource type.

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

32 of 64 16/01/2021, 17:16

Content-Security-Policy: default-src 'self'; script-src example.com

Under this new policy, fonts, frames, and etc. continue to be load from the same origin, but scripts will

only load from example.com. There’s no inheritance; the script-src directive sets the allowed

sources of script, and the default list is not used for that resource type.

Given this behavior, one good way of building a policy for a site would be to begin with a default-

src of 'none', and to build up a policy from there that contains only those resource types which are

actually in use for the page you’d like to protect. If you don’t use webfonts, for instance, there’s no

reason to specify a source list for font-src; specifying only those resource types a page uses ensures

that the possible attack surface for that page remains as small as possible.

7.5. font-src

The font-src directive restricts from where the protected resource can load fonts. The syntax for the

name and value of the directive are described by the following ABNF grammar:

directive-name = "font-src"

directive-value = source-list

The term allowed font sources refers to the result of parsing the font-src directive’s value as a

source list if the policy contains an explicit font-src, or otherwise to the default sources.

Whenever the user agent fetches a URL in the course of one of the following activities, if the URL

does not match the allowed font sources for the protected resource, the user agent MUST act as if

there was a fatal network error and no resource was obtained, and report a violation:

Requesting data for display in a font, such as when processing the <<@font-face>> Cascading

Style Sheets (CSS) rule.

7.6. form-action

The form-action restricts which URLs can be used as the action of HTML form elements. The

syntax for the name and value of the directive are described by the following ABNF grammar:

directive-name = "form-action"

directive-value = source-list

The term allowed form actions refers to the result of parsing the form-action directive’s value as a

source list.

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

33 of 64 16/01/2021, 17:16

Whenever the user agent fetches a URL in the course of processing an HTML form element, if the

URL does not match the allowed form actions for the protected resource, the user agent MUST act as

if there was a fatal network error and no resource was obtained, and report a violation.

Note: form-action does not fall back to the default sources when the directive is not defined.

That is, a policy that defines default-src 'none' but not form-action will still allow form

submissions to any target.

7.7. frame-ancestors

The frame-ancestors directive indicates whether the user agent should allow embedding the

resource using a frame, iframe, object, embed or applet element, or equivalent functionality in non-

HTML resources. Resources can use this directive to avoid many UI Redressing [UIREDRESS]

attacks by avoiding being embedded into potentially hostile contexts.

The syntax for the name and value of the directive are described by the following ABNF grammar:

ancestor-source-list = [ancestor-source *(1*WSP ancestor-source)] / "'none'"

ancestor-source = scheme-source / host-source

directive-name = "frame-ancestors"

directive-value = ancestor-source-list

The term allowed frame ancestors refers to the result of parsing the frame-ancestors directive’s

value as a source list. If a frame-ancestors directive is not explicitly included in the policy, then

allowed frame ancestors is "*".

To enforce the frame-ancestors directive, whenever the user agent would load the protected resource

into a nested browsing context, the user agent MUST perform the following steps:

1. Let nestedContext be the nested browsing context into which the protected resource is being

loaded.

2. Let ancestorList be the list of all ancestors of nestedContext.

3. For each ancestorContext in ancestorList:

1. Let document be ancestorContext’s active document.

2. If document’s URL does not match the allowed frame ancestors for the protected resource,

the user agent MUST:

1. Abort loading the protected resource.

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

34 of 64 16/01/2021, 17:16

2. Take one of the following actions:

1. Act as if it received an empty HTTP 200 response.

2. Redirect the user to a friendly error page which provides the option of opening the

blocked page in a new top-level browsing context.

3. Parse a sandboxing directive using the empty string as the input and the newly created

document’s forced sandboxing flag set as the output.

4. Report a violation.

5. Abort these steps.

Steps 3.2.2 and 3.2.3 ensure that the blocked frame appears to be a normal cross-origin document’s

load. If these steps are ignored, leakage of a document’s policy state is possible.

The frame-ancestors directive MUST be ignored when monitoring a policy, and when a contained

in a policy defined via a meta element.

Note: frame-ancestors does not fall back to the default sources when the directive is not defined.

That is, a policy that defines default-src 'none' but not frame-ancestors will still allow the

resource to be framed from anywhere.

When generating a violation report for a frame-ancestors violation, the user agent MUST NOT

include the value of the embedding ancestor as a blocked-uri value unless it is same-origin with the

protected resource, as disclosing the value of cross-origin ancestors is a violation of the Same-Origin

Policy.

7.7.1. Relation to X-Frame-Options

This directive is similar to the X-Frame-Options header that several user agents have implemented.

The 'none' source expression is roughly equivalent to that header’s DENY, 'self' to SAMEORIGIN, and

so on. The major difference is that many user agents implement SAMEORIGIN such that it only matches

against the top-level document’s location. This directive checks each ancestor. If any ancestor doesn’t

match, the load is cancelled. [RFC7034]

The frame-ancestors directive obsoletes the X-Frame-Options header. If a resource has both

policies, the frame-ancestors policy SHOULD be enforced and the X-Frame-Options policy

SHOULD be ignored.

7.7.2. Multiple Host Source Values

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

35 of 64 16/01/2021, 17:16

This section is not normative.

Multiple source-list expressions are allowed in a single policy (in contrast to X-Frame-Options,

which allows only one) to enable scenarios involving embedded application components that are

multiple levels below the top-level browsing context.

Many common scenarios for permissioned embedding (e.g. embeddable payment, sharing or social

apps) involve potentially many hundreds or thousands of valid source-list expressions, but it is

strongly recommended against accommodating such scenarios with a static frame-ancestors

directive listing multiple values. In such cases it is beneficial to generate this value dynamically, based

on an HTTP Referer header or an explicitly passed-in value, to allow only the sources necessary for

each given embedding of the resource.

Consider a service providing a payments application at https://payments/makeEmbedded. The

service allows this resource to be embedded by both merchant Alice and merchant Bob, who compete

with each other. Sending:

Content-Security-Policy: frame-ancestors https://alice https://bob

would allow Bob to re-frame Alice’s resource and create fraudulent clicks, perhaps discrediting Alice

with her customers or the payments service. If the payments service used additional information (e.g.

as part of a URL like https://payments/makeEmbedded?merchant=alice) to send individually-

tailored headers listing only the source-list expressions needed by each merchant, this attack would be

eliminated.

7.8. frame-src

The frame-src directive is deprecated. Authors who wish to govern nested browsing contexts

SHOULD use the child-src directive instead.

The frame-src directive restricts from where the protected resource can embed frames. The syntax

for the name and value of the directive are described by the following ABNF grammar:

directive-name = "frame-src"

directive-value = source-list

The term allowed frame sources refers to the result of parsing the frame-src directive’s value as a

source list if the policy contains an explicit frame-src, or otherwise to the list of allowed child

sources.

Whenever the user agent fetches a URL in the course of one of the following activities, if the URL

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

36 of 64 16/01/2021, 17:16

does not match the allowed frame sources for the protected resource, the user agent MUST act as if

there was a fatal network error and no resource was obtained, and report a violation:

Requesting data for display in a nested browsing context in the protected resource created by an

iframe or a frame element.

Navigated such a nested browsing context.

7.9. img-src

The img-src directive restricts from where the protected resource can load images. The syntax for the

name and value of the directive are described by the following ABNF grammar:

directive-name = "img-src"

directive-value = source-list

The term allowed image sources refers to the result of parsing the img-src directive’s value as a

source list if the policy contains an explicit img-src, or otherwise to the list of default sources.

Whenever the user agent fetches a URL in the course of one of the following activities, if the URL

does not match the allowed image sources for the protected resource, the user agent MUST act as if

there was a fatal network error and no resource was obtained, and report a violation:

Requesting data for an image, such as when processing the src or srcset attributes of an img

element, the src attribute of an input element with a type of image, the poster attribute of a

video element, the url(), image() or image-set() values on any Cascading Style Sheets (CSS)

property that is capable of loading an image [CSS4-IMAGES], or the href attribute of a link

element with an image-related rel attribute, such as icon.

7.10. media-src

The media-src directive restricts from where the protected resource can load video, audio, and

associated text tracks. The syntax for the name and value of the directive are described by the

following ABNF grammar:

directive-name = "media-src"

directive-value = source-list

The term allowed media sources refers to the result of parsing the media-src directive’s value as a

source list if the policy contains an explicit media-src, or otherwise to the list of default sources.

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

37 of 64 16/01/2021, 17:16

Whenever the user agent fetches a URL in the course of one of the following activities, if the URL

does not match the allowed media sources for the protected resource, the user agent MUST act as if

there was a fatal network error and no resource was obtained, and report a violation:

Requesting data for a video or audio clip, such as when processing the src attribute of a video,

audio, source, or track element.

7.11. object-src

The object-src directive restricts from where the protected resource can load plugins. The syntax for

the name and value of the directive are described by the following ABNF grammar:

directive-name = "object-src"

directive-value = source-list

The term allowed object sources refers to the result of parsing the object-src directive’s value as a

source list if the policy contains an explicit object-src, or otherwise to the list of default sources.

Whenever the user agent fetches a URL in the course of one of the following activities, if the URL

does not match the allowed object sources for the protected resource, the user agent MUST act as if

there was a fatal network error and no resource was obtained, and report a violation:

Requesting data for a plugin, such as when processing the data attribute of an object element,

the src attribute of an embed element, or the code or archive attributes of an applet element.

Requesting data for display in a nested browsing context in the protected resource created by an

object or an embed element.

Navigating such a nested browsing context.

It is not required that the consumer of the element’s data be a plugin in order for the object-src

directive to be enforced. Data for any object, embed, or applet element MUST match the allowed

object sources in order to be fetched. This is true even when the element data is semantically

equivalent to content which would otherwise be restricted by one of the other §7 Directives, such as an

object element with a text/html MIME type.

Whenever the user agent would load a plugin without an associated URL (e.g., because the object

element lacked a data attribute), if the protected resource’s URL does not match the allowed object

sources for the protected resource, the user agent MUST NOT load the plugin.

7.12. plugin-types

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

38 of 64 16/01/2021, 17:16

The plugin-types directive restricts the set of plugins that can be invoked by the protected resource

by limiting the types of resources that can be embedded. The syntax for the name and value of the

directive are described by the following ABNF grammar:

directive-name = "plugin-types"

directive-value = media-type-list

The term allowed plugin media types refers to the result of parsing the plugin-types directive’s

value as a media type list.

Whenever the user agent would instantiate a plugin to handle resource while enforcing the plugin-

types directive, the user agent MUST instead act as though the plugin reported an error and report a

violation if any of the following conditions hold:

The plugin is embedded into the protected resource via an object or embed element that does not

explicitly declare a MIME type via a type attribute.

resource’s media type does not match the list of allowed plugin media types.

The plugin is embedded into the protected resource via an object or embed element, and the

media type declared in the element’s type attribute is not an ASCII case-insensitive match for the

resource’s media type.

The plugin is embedded into the protected resource via an applet element, and resource’s media

type is not an ASCII case-insensitive match for application/x-java-applet.

Note: In any of these cases, acting as though the plugin reported an error will cause the user agent

to display the fallback content.

Whenever the user agent creates a plugin document as the active document of a child browsing

context of the protected resource, if the user agent is enforcing any plugin-types directives for the

protected resource, the user agent MUST enforce those plugin-types directives on the plugin

document as well.

Whenever the user agent creates a plugin document as the active document of a child browsing

context of the protected resource, if the user agent is monitoring any plugin-types directives for the

protected resource, the user agent MUST monitor those plugin-types directives on the plugin

document as well.

7.12.1. Usage

This section is not normative.

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

39 of 64 16/01/2021, 17:16

The plugin-types directive whitelists a certain set of MIME types that can be embedded in a

protected resource. For example, a site might want to ensure that PDF content loads, but that no other

plugins can be instantiated. The following directive would satisfy that requirement:

Content-Security-Policy: plugin-types application/pdf

Resources embedded via an embed or object element delivered with an application/pdf content

type would be rendered in the appropriate plugin; resources delivered with some other content type

would be blocked. Multiple types can be specified, in any order. If the site decided to additionally

allow Flash at some point in the future, it could do so with the following directive:

Content-Security-Policy: plugin-types application/pdf application/x-shockwave-flash

Note: Wildcards are not accepted in the plugin-types directive. Only the resource types

explicitly listed in the directive will be allowed.

7.12.2. Predeclaration of expected media types

This section is not normative.

Enforcing the plugin-types directive requires that object and embed elements declare the expected

media type of the resource they include via the type attribute. If an author expects to load a PDF, she

could specify this as follows:

<object data="resource" type="application/pdf"></object>

If resource isn’t actually a PDF file, it won’t load. This prevents certain types of attacks that rely on

serving content that unexpectedly invokes a plugin other than that which the author intended.

Note: resource will not load in this scenario even if its media type is otherwise whitelisted:

resources will only load when their media type is whitelisted and matches the declared type in

their containing element.

7.13. report-uri

The report-uri directive specifies a URL to which the user agent sends reports about policy

violation. The syntax for the name and value of the directive are described by the following ABNF

grammar:

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

40 of 64 16/01/2021, 17:16

directive-name = "report-uri"

directive-value = uri-reference *(1*WSP uri-reference)

uri-reference = <URI-reference from RFC 3986>

The set of report URLs is the value of the report-uri directive, each resolved relative to the

protected resource’s URL.

The process of sending violation reports to the URLs specified in this directive’s value is defined in

this document’s §4.4 Reporting section.

Note: The report-uri directive will be ignored if contained within a meta element.

7.14. sandbox

The sandbox directive specifies an HTML sandbox policy that the user agent applies to the protected

resource. The syntax for the name and value of the directive are described by the following ABNF

grammar:

directive-name = "sandbox"

directive-value = "" / sandbox-token *(1*WSP sandbox-token)

sandbox-token = <token from RFC 7230>

When enforcing the sandbox directive, the user agent MUST parse a sandboxing directive using the

directive-value as the input and protected resource’s forced sandboxing flag set as the output.

[HTML5]

The sandbox directive will be ignored when monitoring a policy, and when contained in a policy

defined via a meta element. Moreover, this directive has no effect when monitored, and has no

reporting requirements.

7.14.1. Sandboxing and Workers

When delivered via an HTTP header, a Content Security Policy may indicate that sandboxing flags

ought to be applied to a JavaScript execution environment that is not a Document. Of particular

interest is the script content intended for use as a Worker, Shared Worker, or Service Worker. Many of

the sandboxing flags do not apply to such environments, but allow-scripts and allow-same-origin have

special requirements.

When a resource is loaded while executing the runs a Worker algorithm, the user agent MUST act as if

there was a fatal network error and no resource could be obtained if either of the following conditions

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

41 of 64 16/01/2021, 17:16

holds:

1. The sandbox directive delivered with the resource does not contain the allow-scripts flag.

2. The sandbox directive delivered with the resource does not contain the allow-same-origin flag,

and the creation of the new execution context requires it to be same-origin with its creating

context.

7.14.2. Usage

This section is not normative.

HTML5 defines a sandbox attribute for iframe elements, intended to allow web authors to reduce the

risk of including potentially untrusted content by imposing restrictions on that content’s abilities.

When the attribute is set, the content is forced into a unique origin, prevented from submitting forms,

running script, creating or navigating other browsing contexts, and prevented from running plugins.

These restrictions can be loosened by setting certain flags as the attribute’s value.

The sandbox directive allows any resource, framed or not, to ask for the same sorts of restrictions to

be applied to itself.

For example, a message board or email system might provide downloads of arbitrary attachments

provided by other users. Attacks that rely on tricking a client into rendering one of these attachments

could be mitigated by requesting that resources only be rendered in a very restrictive sandbox.

Sending the sandbox directive with an empty value establishes such an environment:

Content-Security-Policy: sandbox

More trusted resources might be allowed to run in an environment with fewer restrictions by adding

allow-* flags to the directive’s value. For example, you can allow a page that you trust to run script,

while ensuring that it isn’t treated as same-origin with the rest of your site. This can be accomplished

by sending the sandbox directive with the allow-scripts flag:

Content-Security-Policy: sandbox allow-scripts

The set of flags available to the CSP directive should match those available to the iframe attribute.

Currently, those include:

allow-forms

allow-pointer-lock

allow-popups

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

42 of 64 16/01/2021, 17:16

allow-same-origin

allow-scripts, and

allow-top-navigation

Note: Like the rest of Content Security Policy, the sandbox directive is meant as a defense-in-

depth. Web authors would be well-served to use it in addition to standard sniffing-mitigation and

privilege-reduction techniques.

7.15. script-src

The script-src directive restricts which scripts the protected resource can execute. The directive also

controls other resources, such as XSLT style sheets [XSLT], which can cause the user agent to execute

script. The syntax for the name and value of the directive are described by the following ABNF

grammar:

directive-name = "script-src"

directive-value = source-list

The term allowed script sources refers to the result of parsing the script-src directive’s value as a

source list if the policy contains an explicit script-src, or otherwise to the default sources.

If 'unsafe-inline' is not in the list of allowed script sources, or if at least one nonce-source or

hash-source is present in the list of allowed script sources:

Whenever the user agent would execute an inline script from a script element that lacks a valid

nonce and lacks a valid hash for the allowed script sources, instead the user agent MUST NOT

execute script, and MUST report a violation.

Whenever the user agent would execute an inline script from an inline event handler, instead the

user agent MUST NOT execute script, and MUST report a violation.

Whenever the user agent would execute script contained in a javascript URL, instead the user

agent MUST NOT execute the script, and MUST report a violation.

If 'unsafe-eval' is not in allowed script sources:

Instead of evaluating their arguments, both operator eval and function eval [ECMA-262] MUST

throw an EvalError exception.

When called as a constructor, the function Function [ECMA-262] MUST throw an EvalError

exception.

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

43 of 64 16/01/2021, 17:16

When called with a first argument that is not callable (a string, for example), the setTimeout()

function MUST return zero without creating a timer.

When called with a first argument that is not callable (a string, for example), the setInterval()

function MUST return zero without creating a timer.

Whenever the user agent fetches a URL (including when following redirects) in the course of one of

the following activities, if the URL does not match the allowed script sources for the protected

resource, the user agent MUST act as if there was a fatal network error and no resource was obtained,

and report a violation:

Requesting a script while processing the src attribute of a script element that lacks a valid

nonce for the allowed script sources.

Requesting a script while invoking the importScripts method on a WorkerGlobalScope object.

[WORKERS]

Requesting an HTML component, such as when processing the href attribute of a link element

with a rel attribute containing the token import. [HTML-IMPORTS]

Requesting an Extensible Stylesheet Language Transformations (XSLT) [XSLT], such as when

processing the <?xml-stylesheet?> processing directive in an XML document [XML11], the

href attributes on <xsl:include> and <xsl:import> elements.

7.15.1. Nonce usage for script elements

This section is not normative.

The script-src directive lets developers specify exactly which script elements on a page were

intentionally included for execution. Ideally, developers would avoid inline script entirely and

whitelist scripts by URL. However, in some cases, removing inline scripts can be difficult or

impossible. For those cases, developers can whitelist scripts using a randomly generated nonce.

Usage is straightforward. For each request, the server generates a unique value at random, and

includes it in the Content-Security-Policy header:

Content-Security-Policy: default-src 'self';

script-src 'self' https://example.com 'nonce-$RANDOM'

This same value is then applied as a nonce attribute to each script element that ought to be executed.

For example, if the server generated the random value Nc3n83cnSAd3wc3Sasdfn939hc3, the server

would send the following policy:

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

44 of 64 16/01/2021, 17:16

Content-Security-Policy: default-src 'self';

script-src 'self' https://example.com 'nonce-Nc3n83cnSAd3wc3Sasdfn939hc3'

Script elements can then execute either because their src URLs are whitelisted or because they have a

valid nonce:

<script>

alert("Blocked because the policy doesn’t have 'unsafe-inline'.")

</script>

<script nonce="EDNnf03nceIOfn39fn3e9h3sdfa">

alert("Still blocked because nonce is wrong.")

</script>

<script nonce="Nc3n83cnSAd3wc3Sasdfn939hc3">

alert("Allowed because nonce is valid.")

</script>

<script src="https://example.com/allowed-because-of-src.js"></script>

<script nonce="EDNnf03nceIOfn39fn3e9h3sdfa"

 src="https://elsewhere.com/blocked-because-nonce-is-wrong.js"></script>

<script nonce="Nc3n83cnSAd3wc3Sasdfn939hc3"

 src="https://elsewhere.com/allowed-because-nonce-is-valid.js"></script>

Note that the nonce’s value is not a hash or signature that verifies the contents of the script resources.

It’s quite simply a random string that informs the user agent which scripts were intentionally included

in the page.

Script elements with the proper nonce execute, regardless of whether they’re inline or external. Script

elements without the proper nonce don’t execute unless their URLs are whitelisted. Even if an attacker

is able to inject markup into the protected resource, the attack will be blocked by the attacker’s

inability to guess the random value.

7.15.2. Hash usage for script elements

This section is not normative.

The script-src directive lets developers whitelist a particular inline script by specifying its hash as

an allowed source of script.

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

45 of 64 16/01/2021, 17:16

Usage is straightforward. The server computes the hash of a particular script block’s contents, and

includes the base64 encoding of that value in the Content-Security-Policy header:

Content-Security-Policy: default-src 'self';

script-src 'self' https://example.com 'sha256-base64 encoded hash

Each inline script block’s contents are hashed, and compared against the whitelisted value. If there’s a

match, the script is executed. For example, the SHA-256 digest of alert('Hello, world.'); is

qznLcsROx4GACP2dm0UCKCzCG+HiZ1guq6ZZDob/Tng=.

You can obtain the digest of a string on the command line simply via the openssl program. For

example:

echo -n "alert('Hello, world.');" | openssl dgst -sha256 -binary | openssl enc -base64

If the server sent the following header:

Content-Security-Policy: script-src 'sha512-YWIzOWNiNzJjNDRlYzc4MTgwMDhmZDlkOWI0NTAyMjgyY2MyMWJlMWUyNj

Then the following script tag would result in script execution:

<script>alert('Hello, world.');</script>

Whitespace is significant. The following scripts blocks would not hash to the same value, and would

therefore not execute:

<script> alert('Hello, world.');</script>

<script>alert('Hello, world.'); </script>

<script> alert('Hello, world.'); </script>

<script>

alert('Hello, world.');

</script>

Note also that the hash applies only to inline script. An externalized script containing the value

alert('Hello, world.'); would not execute if its origin was not whitelisted as a valid source of

script.

7.16. style-src

The style-src directive restricts which styles the user may applies to the protected resource. The

syntax for the name and value of the directive are described by the following ABNF grammar:

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

46 of 64 16/01/2021, 17:16

directive-name = "style-src"

directive-value = source-list

The term allowed style sources refers to the result of parsing the style-src directive’s value as a

source list if the policy contains an explicit style-src, or otherwise to the default sources.

If 'unsafe-inline' is not in the list of allowed style sources, or if at least one nonce-source or

hash-source is present in the list of allowed style sources:

Whenever the user agent would apply style from a style element that lacks a valid nonce and

lacks a valid hash for the allowed style sources, instead the user agent MUST ignore the style, and

MUST report a violation.

Whenever the user agent would apply style from a style attribute, instead the user agent MUST

ignore the style, and MUST report a violation.

Note: These restrictions on inline do not prevent the user agent from applying style from an

external stylesheet (e.g., found via <link rel="stylesheet" ...>).

If 'unsafe-eval' is not in allowed style sources, then:

Whenever the user agent would invoke the Cascading Style Sheets Object Model algorithms

insert a CSS rule, parse a CSS rule, parse a CSS declaration block, or parse a group of selectors

instead the user agent MUST throw a SecurityError exception and terminate the algorithm. This

would include, for example, all invocations of CSSOM’s various cssText setters and

insertRule methods. [CSSOM] [HTML5]

Whenever the user agent fetches a URL in the course of one of the following activities, if the URL

does not match the allowed style sources for the protected resource, the user agent MUST act as if

there was a fatal network error and no resource was obtained, and report a violation:

Requesting an external stylesheet when processing the href of a link element whose rel attribute

contains the token stylesheet.

Requesting an external stylesheet when processing the <<@import>> directive.

Requesting an external stylesheet when processing a Link HTTP response header field

[RFC5988].

Note: As this stylesheet might be prefetched before a Document actually exists, user agents

will need to carefully consider how to instantiate a meaningful policy against which to

compare this request. See §10.1 Processing Complications for more detail.

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

47 of 64 16/01/2021, 17:16

Note: The style-src directive does not restrict the use of XSLT. XSLT is restricted by the

script-src directive because the security consequences of including an untrusted XSLT

stylesheet are similar to those incurred by including an untrusted script.

7.16.1. Nonce usage for style elements

This section is not normative.

See the script-src nonce usage information for detail; the application of nonces to style elements is

similar enough to avoid repetition here.

7.16.2. Hash usage for style elements

This section is not normative.

See the script-src hash usage information for detail; the application of hashes to style elements is

similar enough to avoid repetition here.

8. Examples

8.1. Sample Policy Definitions

This section provides some sample use cases and supporting policies.

A server wishes to load resources only from its own origin:

Content-Security-Policy: default-src 'self'

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

48 of 64 16/01/2021, 17:16

An auction site wishes to load images from any URL, plugin content from a list of trusted media

providers (including a content distribution network), and scripts only from a server under its

control hosting sanitized ECMAScript:

Content-Security-Policy:

default-src 'self'; img-src *;

object-src media1.example.com media2.example.com *.cdn.example.com;

script-src trustedscripts.example.com

An online banking site wishes to ensure that all of the content in its pages is loaded over TLS to

prevent attackers from eavesdropping on insecure content requests:

Content-Security-Policy: default-src https: 'unsafe-inline' 'unsafe-eval'

This policy allows inline content (such as inline script elements), use of eval, and loading

resources over https. Note: This policy does not provide any protection from cross-site scripting

vulnerabilities.

A website that relies on inline script elements wishes to ensure that script is only executed from

its own origin, and those elements it intentionally inserted inline:

Content-Security-Policy: script-src 'self' 'nonce-$RANDOM';

The inline script elements would then only execute if they contained a matching nonce attribute:

<script nonce="$RANDOM">...</script>

8.2. Sample Violation Report

This section contains an example violation report the user agent might sent to a server when the

protected resource violations a sample policy.

In the following example, the user agent rendered a representation of the resource

http://example.org/page.html with the following policy:

default-src 'self'; report-uri http://example.org/csp-report.cgi

The protected resource loaded an image from http://evil.example.com/image.png, violating the

policy.

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

49 of 64 16/01/2021, 17:16

{

 "csp-report": {

 "document-uri": "http://example.org/page.html",

 "referrer": "http://evil.example.com/haxor.html",

 "blocked-uri": "http://evil.example.com/image.png",

 "violated-directive": "default-src 'self'",

 "effective-directive": "img-src",

 "original-policy": "default-src 'self'; report-uri http://example.org/csp-report.cgi"

 }

}

9. Security Considerations

9.1. Cascading Style Sheet (CSS) Parsing

The style-src directive restricts the locations from which the protected resource can load styles.

However, if the user agent uses a lax CSS parsing algorithm, an attacker might be able to trick the user

agent into accepting malicious "stylesheets" hosted by an otherwise trustworthy origin.

These attacks are similar to the CSS cross-origin data leakage attack described by Chris Evans in

2009. User agents SHOULD defend against both attacks using the same mechanism: stricter CSS

parsing rules for style sheets with improper MIME types.

9.2. Redirect Information Leakage

The violation reporting mechanism in this document has been designed to mitigate the risk that a

malicious web site could use violation reports to probe the behavior of other servers. For example,

consider a malicious web site that white lists https://example.com as a source of images. If the

malicious site attempts to load https://example.com/login as an image, and the example.com

server redirects to an identity provider (e.g., identityprovider.example.net), CSP will block the

request. If violation reports contained the full blocked URL, the violation report might contain

sensitive information contained in the redirected URL, such as session identifiers or purported

identities. For this reason, the user agent includes only the origin of the blocked URL.

The mitigations are not complete, however: redirects which are blocked will produce side-effects

which may be visible to JavaScript (via img.naturalHeight, for instance). An earlier version of this

specification defined a CSP request header which servers could use (in conjunction with the referer

and origin headers) to determine whether or not it was completely safe to redirect a user. This header

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

50 of 64 16/01/2021, 17:16

caused some issues with CORS processing (tracked in whatwg/fetch#52), and has been punted to the

next version of this document.

10. Implementation Considerations

The Content-Security-Policy header is an end-to-end header. It is processed and enforced at the

client and, therefore, SHOULD NOT be modified or removed by proxies or other intermediaries not in

the same administrative domain as the resource.

The originating administrative domain for a resource might wish to apply a Content-Security-

Policy header outside of the immediate context of an application. For example, a large organization

might have many resources and applications managed by different individuals or teams but all subject

to a uniform organizational standard. In such situations, a Content-Security-Policy header might

be added or combined with an existing one at a network-edge security gateway device or web

application firewall. To enforce multiple policies, the administrator SHOULD combine the policy into

a single header. An administrator might wish to use different combination algorithms depending on his

or her intended semantics.

One sensible policy combination algorithm is to start by allowing a default set of sources and then

letting individual upstream resource owners expand the set of allowed sources by including additional

origins. In this approach, the resultant policy is the union of all allowed origins in the input policies.

Another sensible policy combination algorithm is to intersect the given policies. This approach

enforces that content comes from a certain whitelist of origins, for example, preventing developers

from including third-party scripts or content in violation of organizational standards and practices. In

this approach, the combination algorithm forms the combined policy by removing disallowed hosts

from the policies supplied by upstream resource owners.

Interactions between the default-src and other directives SHOULD be given special consideration

when combining policies. If none of the policies contains a default-src directive, adding new src

directives results in a more restrictive policy. However, if one or more of the input policies contain a

default-src directive, adding new src directives might result in a less restrictive policy, for example,

if the more specific directive contains a more permissive set of allowed origins.

Using a more restrictive policy than the input policy authored by the resource owner might prevent the

resource from rendering or operating as intended.

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

51 of 64 16/01/2021, 17:16

Note: Migration to HTTPS from HTTP may require updates to the policy in order to keep things

running as before. Source expressions like http://example.com do not match HTTPS resources.

For example, administrators SHOULD carefully examine existing policies before rolling out

HTTP Strict Transport Security headers for an application. [RFC6797]

Server administrators MAY wish to send multiple policies if different reporting options are desired

for subsets of an overall policy. For instance, the following headers:

Content-Security-Policy: frame-ancestors https://example.com/

Content-Security-Policy: default-src https:; report-uri https://example.com/

would send violation reports for http resources, but would not send violation reports for frame-

ancestors violations. Note also that combining them via ',' into the single header

Content-Security-Policy: frame-ancestors https://example.com/, default-src https:; report-uri https

would have the same effect, as the comma splits the header during parsing.

10.1. Processing Complications

Many user agents implement some form of optimistic resource fetching algorithm to speed up page

loads. In implementing these features, user agents MUST ensure that these optimizations do not alter

the behavior of the page’s security policy.

Here, we’ll note a few potential complications that could cause bugs in implementations:

1. The frame-ancestor directive MUST take effect before a document is loaded into a nested

browsing context, and certainly before script is potentially executed. One way to approach this

constraint is to perform the ancestor check defined in §7.7 frame-ancestors while parsing the

document’s headers. This might mean that no document object is available at all, which can

complicate checks against 'self', and scheme- or port-relative source expressions.

2. Likewise, the Link HTTP response header could generate requests for stylesheet resources before

a document is available. User agents MUST ensure that any policy contained in the response

headers is parsed and effective before these requests are generated. For example, a response

returning the following headers:

Content-Security-Policy: style-src 'none'

Link: <awesome.css>; rel=stylesheet

MUST have the same behavior as a response returning the following headers:

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

52 of 64 16/01/2021, 17:16

Link: <awesome.css>; rel=stylesheet

Content-Security-Policy: style-src 'none'

namely, both must block requests for the stylesheet. To fulfil this requirement user agents MUST

wait until all headers have been processed before beginning to prefetch resources.

11. IANA Considerations

The permanent message header field registry should be updated with the following registrations:

[RFC3864]

11.1. Content-Security-Policy

Header field name
Content-Security-Policy

Applicable protocol
http

Status
standard

Author/Change controller
W3C

Specification document
This specification (See Content-Security-Policy Header Field)

11.2. Content-Security-Policy-Report-Only

Header field name
Content-Security-Policy-Report-Only

Applicable protocol
http

Status
standard

Author/Change controller
W3C

Specification document
This specification (See Content-Security-Policy-Report-Only Header Field)

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

53 of 64 16/01/2021, 17:16

12. Acknowledgements

In addition to the documents in the W3C Web Application Security working group, the work on this

document is also informed by the work of the IETF websec working group, particularly that working

group’s requirements document: draft-hodges-websec-framework-reqs.

A portion of the frame-ancestors directive was originally developed as X-Frame-Options.

[RFC7034]

Brian Smith, Neil Matatall, Anne van Kesteren, and Sigbjørn Vik provided particularly insightful

feedback to keep this specification sane.

Conformance

Document conventions

Conformance requirements are expressed with a combination of descriptive assertions and RFC 2119

terminology. The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in the normative

parts of this document are to be interpreted as described in RFC 2119. However, for readability, these

words do not appear in all uppercase letters in this specification.

All of the text of this specification is normative except sections explicitly marked as non-normative,

examples, and notes. [RFC2119]

Examples in this specification are introduced with the words "for example" or are set apart from the

normative text with class="example", like this:

This is an example of an informative example.

Informative notes begin with the word "Note" and are set apart from the normative text with

class="note", like this:

Note, this is an informative note.

Conformant Algorithms

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

54 of 64 16/01/2021, 17:16

Requirements phrased in the imperative as part of algorithms (such as "strip any leading space

characters" or "return false and abort these steps") are to be interpreted with the meaning of the key

word ("must", "should", "may", etc) used in introducing the algorithm.

Conformance requirements phrased as algorithms or specific steps can be implemented in any manner,

so long as the end result is equivalent. In particular, the algorithms defined in this specification are

intended to be easy to understand and are not intended to be performant. Implementers are encouraged

to optimize.

Conformance Classes

A conformant user agent must implement all the requirements listed in this specification that are

applicable to user agents.

A conformant server must implement all the requirements listed in this specification that are

applicable to servers.

Index

Terms defined by this specification

allowed base URLs, in §7.1

allowed child sources, in §7.2

allowed connection targets, in §7.3

allowed font sources, in §7.5

allowed form actions, in §7.6

allowed frame ancestors, in §7.7

allowed frame sources, in §7.8

allowed image sources, in §7.9

allowed media sources, in §7.10

allowed object sources, in §7.11

allowed plugin media types, in §7.12

allowed script sources, in §7.15

allowed style sources, in §7.16

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

55 of 64 16/01/2021, 17:16

ALPHA, in §2.4

ancestor-source, in §7.7

ancestor-source-list, in §7.7

base64-value, in §4.2

base-uri, in §7.1

blockedURI

attribute for SecurityPolicyViolationEvent, in §6.1

dict-member for SecurityPolicyViolationEventInit, in §6.2

callable, in §2.3

callers, in §2.3

child-src, in §7.2

columnNumber

attribute for SecurityPolicyViolationEvent, in §6.1

dict-member for SecurityPolicyViolationEventInit, in §6.2

conformant server, in §Unnumbered section

conformant user agent, in §Unnumbered section

connect-src, in §7.3

Content-Security-Policy, in §3.1

Content-Security-Policy-Report-Only, in §3.2

Content Security Policy task source, in §4.4

default sources, in §7.4

default-src, in §7.4

digest of element’s content, in §4.2.5

DIGIT, in §2.4

directive, in §2.1

directive name, in §2.1

directive-name, in §4.1

directive-token, in §4.1

directive-value, in §4.1

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

56 of 64 16/01/2021, 17:16

directive value, in §2.1

documentURI

attribute for SecurityPolicyViolationEvent, in §6.1

dict-member for SecurityPolicyViolationEventInit, in §6.2

effectiveDirective

attribute for SecurityPolicyViolationEvent, in §6.1

dict-member for SecurityPolicyViolationEventInit, in §6.2

element’s content, in §4.2.5

enforce, in §5

eventInitDict, in §6.1

fire a violation event, in §6.3

font-src, in §7.5

form-action, in §7.6

frame-ancestors, in §7.7

frame-src, in §7.8

generate a violation report object, in §4.4

generating a violation report object, in §4.4

globally unique identifier, in §2.2

hash-algo, in §4.2

hash-source, in §4.2

hash-value, in §4.2

host-char, in §4.2

host-part, in §4.2

host-source, in §4.2

HTTP 200 response, in §2.2

img-src, in §7.9

JSON object, in §2.2

JSON stringification, in §2.2

keyword-source, in §4.2

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

57 of 64 16/01/2021, 17:16

lineNumber

attribute for SecurityPolicyViolationEvent, in §6.1

dict-member for SecurityPolicyViolationEventInit, in §6.2

match a media type list, in §4.3.2

match a source expression, in §4.2.2

match a source list, in §4.2.2

media-src, in §7.10

media type, in §4.3

media-type, in §4.3

media type list, in §4.3

media-type-list, in §4.3

monitor, in §5

nonce

attribute for HTMLScriptElement, in §4.2.3

element-attr for script, in §4.2.3

attribute for HTMLStyleElement, in §4.2.3

element-attr for style, in §4.2.3

nonce-source, in §4.2

nonce-value, in §4.2

object-src, in §7.11

origin, in §2.2

originalPolicy

attribute for SecurityPolicyViolationEvent, in §6.1

dict-member for SecurityPolicyViolationEventInit, in §6.2

parse a media type list, in §4.3.1

parse a source list, in §4.2.1

parse the policy, in §4.1.1

path-part, in §4.2

plugin-types, in §7.12

policy, in §2.1

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

58 of 64 16/01/2021, 17:16

policy-token, in §4.1

port-part, in §4.2

protected resource, in §2.1

referrer

attribute for SecurityPolicyViolationEvent, in §6.1

dict-member for SecurityPolicyViolationEventInit, in §6.2

report a violation, in §4.4

report-uri, in §7.13

representation, in §2.2

resource representation, in §2.2

runs a worker, in §2.3

sandbox, in §7.14

sandbox-token, in §7.14

scheme-part, in §4.2

scheme-source, in §4.2

script-src, in §7.15

security policy, in §2.1

security policy directive, in §2.1

security policy directive name, in §2.1

security policy directive value, in §2.1

SecurityPolicyViolationEvent, in §6.1

SecurityPolicyViolationEventInit, in §6.2

SecurityPolicyViolationEvent(type, eventInitDict), in §6.1

send violation reports, in §4.4

set of report URLs, in §7.13

SHA-256, in §2.2

SHA-384, in §2.2

SHA-512, in §2.2

source-expression, in §4.2

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

59 of 64 16/01/2021, 17:16

source expression, in §4.2

source-file, in §4.4

sourceFile

attribute for SecurityPolicyViolationEvent, in §6.1

dict-member for SecurityPolicyViolationEventInit, in §6.2

source-list, in §4.2

source list, in §4.2

statusCode, in §6.1

stripped for reporting, in §4.4

strip uri for reporting, in §4.4

style-src, in §7.16

type, in §6.1

uri-reference, in §7.13

URL, in §2.2

valid hash, in §4.2.5

valid nonce, in §4.2.4

VCHAR, in §2.4

violatedDirective

attribute for SecurityPolicyViolationEvent, in §6.1

dict-member for SecurityPolicyViolationEventInit, in §6.2

WSP, in §2.4

Terms defined by reference

[css-images-3] defines the following terms:

image-set()

[css-images-4] defines the following terms:

image()

[WebIDL] defines the following terms:

DOMString

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

60 of 64 16/01/2021, 17:16

References

Normative References

[ABNF]
Dave Crocker; Paul Overell. Augmented BNF for Syntax Specifications: ABNF. RFC. URL:

http://www.ietf.org/rfc/rfc5234.txt

[BEACON]
Jatinder Mann; Alois Reitbauer. Beacon. WD. URL: https://www.w3.org/TR/beacon/

[ECMA-262]
Allen Wirfs-Brock. ECMA-262 6th Edition, The ECMAScript 2015 Language Specification.

June 2015. Standard. URL: http://www.ecma-international.org/ecma-262/6.0/

[FIPS180]
Secure Hash Standard. URL: http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

[HTML-IMPORTS]
Dmitri Glazkov; Hajime Morrita. HTML Imports. WD. URL: https://www.w3.org/TR/html-

imports/

[HTML5]
Ian Hickson; et al. HTML5. REC. URL: https://www.w3.org/TR/html5/

[RFC3492]
Adam M. Costello. Punycode: A Bootstring encoding of Unicode for Internationalized Domain

Names in Applications (IDNA). REC. URL: http://www.ietf.org/rfc/rfc3492.txt

[RFC3864]
Graham Klyne; Mark Nottingham; Jeffrey C. Mogul. Registration Procedures for Message

Header Fields. RFC. URL: http://www.ietf.org/rfc/rfc3864.txt

[RFC4627]
Douglas Crockford. The 'application/json' Media Type for JavaScript Object Notation (JSON).

RFC. URL: http://www.ietf.org/rfc/rfc4627.txt

[RFC6454]
Adam Barth. The Web Origin Concept. RFC. URL: http://www.ietf.org/rfc/rfc6454.txt

[RFC7034]
David Ross; Tobias Gondrom. HTTP Header Field X-Frame-Options. RFC. URL:

http://www.ietf.org/rfc/rfc7034.txt

[RFC7230]
Roy T. Fielding; Julian F. Reschke. HTTP/1.1 Message Syntax and Routing. RFC. URL:

http://www.ietf.org/rfc/rfc7230.txt

[RFC7231]
Roy T. Fielding; Julian F. Reschke. HTTP/1.1 Semantics and Content. RFC. URL:

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

61 of 64 16/01/2021, 17:16

http://www.ietf.org/rfc/rfc7231.txt

[URL]
Anne van Kesteren. URL Standard. Living Standard. URL: https://url.spec.whatwg.org/

Note: URLs can be used in numerous different manners, in many differing contexts. For the

purpose of producing strict URLs one may wish to consider [RFC3986] [RFC3987].

URLs can be used in numerous different manners, in many differing contexts. For the

purpose of producing strict URLs one may wish to consider [RFC3986] [RFC3987].

As a word of caution, there are notable differences in the manner in which Web browsers and

other software stacks outside the HTML context handle URLs. While no changes would be

accepted to URL processing that would break existing Web content, some important parts of

URL processing should therefore be considered as implementation-defined (e.g. parsing file:

URLs or operating on URLs that would be syntax errors under the [RFC3986] [RFC3987]

syntax).

[WebIDL]
Cameron McCormack. Web IDL Level 1. 08 March 2016. CR. URL: https://www.w3.org

/TR/WebIDL-1/

[XMLHttpRequest]
Anne van Kesteren; et al. XMLHttpRequest Level 1. 30 January 2014. WD. URL:

https://www.w3.org/TR/XMLHttpRequest/

[CSS-IMAGES-3]
CSS Image Values and Replaced Content Module Level 3 URL: https://www.w3.org/TR/css3-

images/

[CSS-IMAGES-4]
CSS Image Values and Replaced Content Module Level 4 URL: https://www.w3.org/TR/css4-

images/

[CSS3-FONTS]
John Daggett. CSS Fonts Module Level 3. 3 October 2013. CR. URL: https://www.w3.org

/TR/css-fonts-3/

[CSS4-IMAGES]
Elika Etemad; Tab Atkins Jr.. CSS Image Values and Replaced Content Module Level 4. 11

September 2012. WD. URL: https://www.w3.org/TR/css4-images/

[CSSOM]
Simon Pieters; Glenn Adams. CSS Object Model (CSSOM). 5 December 2013. WD. URL:

https://www.w3.org/TR/cssom/

[EVENTSOURCE]

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

62 of 64 16/01/2021, 17:16

Ian Hickson. Server-Sent Events. 3 February 2015. REC. URL: https://www.w3.org

/TR/eventsource/

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best

Current Practice. URL: https://tools.ietf.org/html/rfc2119

[RFC3986]
T. Berners-Lee; R. Fielding; L. Masinter. Uniform Resource Identifier (URI): Generic Syntax.

January 2005. Internet Standard. URL: https://tools.ietf.org/html/rfc3986

[RFC5988]
M. Nottingham. Web Linking. October 2010. Proposed Standard. URL: https://tools.ietf.org

/html/rfc5988

[WEBSOCKETS]
Ian Hickson. The WebSocket API. 20 September 2012. CR. URL: https://www.w3.org

/TR/websockets/

[WORKERS]
Ian Hickson. Web Workers. 1 May 2012. CR. URL: https://www.w3.org/TR/workers/

[XML11]
Tim Bray; et al. Extensible Markup Language (XML) 1.1 (Second Edition). 16 August 2006.

REC. URL: https://www.w3.org/TR/xml11/

[XSLT]
James Clark. XSL Transformations (XSLT) Version 1.0. 16 November 1999. REC. URL:

https://www.w3.org/TR/xslt

Informative References

[RFC6797]
Jeff Hodges; Collin Jackson; Adam Barth. HTTP Strict Transport Security (HSTS). RFC. URL:

http://www.ietf.org/rfc/rfc6797.txt

[UIREDRESS]
Giorgio Maone; et al. User Interface Security Directives for Content Security Policy. WD. URL:

https://www.w3.org/TR/UISecurity/

IDL Index

partial interface HTMLScriptElement {

 attribute DOMString nonce;

};

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

63 of 64 16/01/2021, 17:16

partial interface HTMLStyleElement {

 attribute DOMString nonce;

};

[Constructor(DOMString type, optional SecurityPolicyViolationEventInit eventInitDict

interface SecurityPolicyViolationEvent : Event {

 readonly attribute DOMString documentURI;

 readonly attribute DOMString referrer;

 readonly attribute DOMString blockedURI;

 readonly attribute DOMString violatedDirective;

 readonly attribute DOMString effectiveDirective;

 readonly attribute DOMString originalPolicy;

 readonly attribute DOMString sourceFile;

 readonly attribute DOMString statusCode;

 readonly attribute long lineNumber;

 readonly attribute long columnNumber;

};

dictionary SecurityPolicyViolationEventInit : EventInit {

 DOMString documentURI;

 DOMString referrer;

 DOMString blockedURI;

 DOMString violatedDirective;

 DOMString effectiveDirective;

 DOMString originalPolicy;

 DOMString sourceFile;

 long lineNumber;

 long columnNumber;

};

↑

Content Security Policy Level 2 https://www.w3.org/TR/CSP2/

64 of 64 16/01/2021, 17:16

