
Media Source Extensions™

This version:
https://w3c.github.io/media-source/

Latest published version:
https://www.w3.org/TR/media-source/

Latest editor's draft:
https://w3c.github.io/media-source/

Implementation report:
https://tidoust.github.io/media-source-testcoverage/

Editors:
Matthew Wolenetz (Google Inc.)

Mark Watson (Netflix Inc.)

Former editors:
Jerry Smith (Microsoft Corporation) (Until September 2017)

Aaron Colwell (Google Inc.) (Until April 2015)

Adrian Bateman (Microsoft Corporation) (Until April 2015)

Repository:
We are on GitHub

File a bug

Commit history

Mailing list:
public-media-wg@w3.org

Implementation:
Can I use Media Source Extensions?

Test Suite

Test Suite repository

Please check the errata for any errors or issues reported since publication.

Copyright © 2020 W3C® (MIT, ERCIM, Keio, Beihang). W3C liability, trademark and permissive document license rules

apply.

W3C Editor's Draft 25 November 2020

Status of This Document

Media Source Extensions™ https://w3c.github.io/media-source/

1 of 74 27/01/2021, 07:45

1.

1.1

1.2

2.

2.1

2.2

2.3

2.4

2.4.1

2.4.2

This section describes the status of this document at the time of its publication. Other documents may

supersede this document. A list of current W3C publications and the latest revision of this technical

report can be found in the W3C technical reports index at https://www.w3.org/TR/.

The working group maintains a list of all bug reports that the editors have not yet tried to address.

Implementors should be aware that this specification is not stable. Implementors who are not taking

part in the discussions are likely to find the specification changing out from under them in

incompatible ways. Vendors interested in implementing this specification before it eventually reaches

the Candidate Recommendation stage should track the GitHub repository and take part in the

discussions.

This document was published by the Media Working Group as an Editor's Draft.

Publication as an Editor's Draft does not imply endorsement by the W3C Membership.

This is a draft document and may be updated, replaced or obsoleted by other documents at any time. It

is inappropriate to cite this document as other than work in progress.

This document was produced by a group operating under the 1 August 2017 W3C Patent Policy. W3C

maintains a public list of any patent disclosures made in connection with the deliverables of the group;

that page also includes instructions for disclosing a patent. An individual who has actual knowledge of

a patent which the individual believes contains Essential Claim(s) must disclose the information in

accordance with section 6 of the W3C Patent Policy.

This document is governed by the 15 September 2020 W3C Process Document.

Introduction

Goals

Definitions

MediaSource Object

Attributes

Methods

Event Summary

Algorithms

Attaching to a media element

Detaching from a media element

Table of Contents

Media Source Extensions™ https://w3c.github.io/media-source/

2 of 74 27/01/2021, 07:45

2.4.3

2.4.4

2.4.5

2.4.6

2.4.7

3.

3.1

3.2

3.3

3.4

3.5

3.5.1

3.5.2

3.5.3

3.5.4

3.5.5

3.5.6

3.5.7

3.5.8

3.5.9

3.5.10

3.5.11

3.5.12

3.5.13

4.

4.1

4.2

4.3

5.

5.1

6.

7.

8.

Seeking

SourceBuffer Monitoring

Changes to selected/enabled track state

Duration change

End of stream algorithm

SourceBuffer Object

Attributes

Methods

Track Buffers

Event Summary

Algorithms

Segment Parser Loop

Reset Parser State

Append Error Algorithm

Prepare Append Algorithm

Buffer Append Algorithm

Range Removal

Initialization Segment Received

Coded Frame Processing

Coded Frame Removal Algorithm

Coded Frame Eviction Algorithm

Audio Splice Frame Algorithm

Audio Splice Rendering Algorithm

Text Splice Frame Algorithm

SourceBufferList Object

Attributes

Methods

Event Summary

URL Object Extensions

Methods

HTMLMediaElement Extensions

AudioTrack Extensions

VideoTrack Extensions

Media Source Extensions™ https://w3c.github.io/media-source/

3 of 74 27/01/2021, 07:45

9.

10.

11.

12.

13.

A.

B.

B.1

B.2

TextTrack Extensions

Byte Stream Formats

Conformance

Examples

Acknowledgments

VideoPlaybackQuality

References

Normative references

Informative references

This specification extends HTMLMediaElement [HTML] to allow JavaScript to generate media streams

for playback. Allowing JavaScript to generate streams facilitates a variety of use cases like adaptive

streaming and time shifting live streams.

This section is non-normative.

This specification allows JavaScript to dynamically construct media streams for <audio> and <video>.

It defines a MediaSource object that can serve as a source of media data for an HTMLMediaElement.

MediaSource objects have one or more SourceBuffer objects. Applications append data segments to

the SourceBuffer objects, and can adapt the quality of appended data based on system performance

and other factors. Data from the SourceBuffer objects is managed as track buffers for audio, video

and text data that is decoded and played. Byte stream specifications used with these extensions are

available in the byte stream format registry [MSE-REGISTRY].

Abstract

1. Introduction

Media Source Extensions™ https://w3c.github.io/media-source/

4 of 74 27/01/2021, 07:45

MediaSource

SourceBuffer

Track
Buffer

Video
Decoder

Track
Buffer

Audio
Decoder

Track
Buffer

Audio
Decoder

SourceBuffer

Track
Buffer

Video
Decoder

SourceBuffer

Track
Buffer

Audio
Decoder

Audio Device

Video Tag
Display Region

Media Source API

HTML Media Element

This specification was designed with the following goals in mind:

Allow JavaScript to construct media streams independent of how the media is fetched.

Define a splicing and buffering model that facilitates use cases like adaptive streaming, ad-

insertion, time-shifting, and video editing.

Minimize the need for media parsing in JavaScript.

1.1 Goals

Media Source Extensions™ https://w3c.github.io/media-source/

5 of 74 27/01/2021, 07:45

Leverage the browser cache as much as possible.

Provide requirements for byte stream format specifications.

Not require support for any particular media format or codec.

This specification defines:

Normative behavior for user agents to enable interoperability between user agents and web

applications when processing media data.

Normative requirements to enable other specifications to define media formats to be used within

this specification.

Active Track Buffers
The track buffers that provide coded frames for the enabled audioTracks, the selected

videoTracks, and the "showing" or "hidden" textTracks. All these tracks are associated with

SourceBuffer objects in the activeSourceBuffers list.

Append Window
A presentation timestamp range used to filter out coded frames while appending. The append

window represents a single continuous time range with a single start time and end time. Coded

frames with presentation timestamp within this range are allowed to be appended to the

SourceBuffer while coded frames outside this range are filtered out. The append window start

and end times are controlled by the appendWindowStart and appendWindowEnd attributes

respectively.

Coded Frame
A unit of media data that has a presentation timestamp, a decode timestamp, and a coded frame

duration.

Coded Frame Duration
The duration of a coded frame. For video and text, the duration indicates how long the video

frame or text SHOULD be displayed. For audio, the duration represents the sum of all the

samples contained within the coded frame. For example, if an audio frame contained 441 samples

@44100Hz the frame duration would be 10 milliseconds.

Coded Frame End Timestamp
The sum of a coded frame presentation timestamp and its coded frame duration. It represents the

presentation timestamp that immediately follows the coded frame.

1.2 Definitions

Media Source Extensions™ https://w3c.github.io/media-source/

6 of 74 27/01/2021, 07:45

Coded Frame Group
A group of coded frames that are adjacent and have monotonically increasing decode timestamps

without any gaps. Discontinuities detected by the coded frame processing algorithm and abort()

calls trigger the start of a new coded frame group.

Decode Timestamp
The decode timestamp indicates the latest time at which the frame needs to be decoded assuming

instantaneous decoding and rendering of this and any dependant frames (this is equal to the

presentation timestamp of the earliest frame, in presentation order, that is dependant on this

frame). If frames can be decoded out of presentation order, then the decode timestamp MUST be

present in or derivable from the byte stream. The user agent MUST run the append error

algorithm if this is not the case. If frames cannot be decoded out of presentation order and a

decode timestamp is not present in the byte stream, then the decode timestamp is equal to the

presentation timestamp.

Initialization Segment
A sequence of bytes that contain all of the initialization information required to decode a

sequence of media segments. This includes codec initialization data, Track ID mappings for

multiplexed segments, and timestamp offsets (e.g., edit lists).

NOTE

The byte stream format specifications in the byte stream format registry [MSE-REGISTRY]

contain format specific examples.

Media Segment
A sequence of bytes that contain packetized & timestamped media data for a portion of the media

timeline. Media segments are always associated with the most recently appended initialization

segment.

NOTE

The byte stream format specifications in the byte stream format registry [MSE-REGISTRY]

contain format specific examples.

MediaSource object URL
A MediaSource object URL is a unique Blob URI [FILE-API] created by createObjectURL(). It

is used to attach a MediaSource object to an HTMLMediaElement.

These URLs are the same as a Blob URI, except that anything in the definition of that feature that

refers to File and Blob objects is hereby extended to also apply to MediaSource objects.

Media Source Extensions™ https://w3c.github.io/media-source/

7 of 74 27/01/2021, 07:45

The origin of the MediaSource object URL is the relevant settings object of this during the call

to createObjectURL().

NOTE

For example, the origin of the MediaSource object URL affects the way that the media

element is consumed by canvas.

Parent Media Source
The parent media source of a SourceBuffer object is the MediaSource object that created it.

Presentation Start Time
The presentation start time is the earliest time point in the presentation and specifies the initial

playback position and earliest possible position. All presentations created using this specification

have a presentation start time of 0.

NOTE

For the purposes of determining if HTMLMediaElement.buffered contains a TimeRange that

includes the current playback position, implementations MAY choose to allow a current

playback position at or after presentation start time and before the first TimeRange to play the

first TimeRange if that TimeRange starts within a reasonably short time, like 1 second, after

presentation start time. This allowance accommodates the reality that muxed streams

commonly do not begin all tracks precisely at presentation start time. Implementations MUST

report the actual buffered range, regardless of this allowance.

Presentation Interval
The presentation interval of a coded frame is the time interval from its presentation timestamp to

the presentation timestamp plus the coded frame's duration. For example, if a coded frame has a

presentation timestamp of 10 seconds and a coded frame duration of 100 milliseconds, then the

presentation interval would be [10-10.1). Note that the start of the range is inclusive, but the end

of the range is exclusive.

Presentation Order
The order that coded frames are rendered in the presentation. The presentation order is achieved

by ordering coded frames in monotonically increasing order by their presentation timestamps.

Presentation Timestamp
A reference to a specific time in the presentation. The presentation timestamp in a coded frame

indicates when the frame SHOULD be rendered.

Random Access Point

Media Source Extensions™ https://w3c.github.io/media-source/

8 of 74 27/01/2021, 07:45

A position in a media segment where decoding and continuous playback can begin without

relying on any previous data in the segment. For video this tends to be the location of I-frames. In

the case of audio, most audio frames can be treated as a random access point. Since video tracks

tend to have a more sparse distribution of random access points, the location of these points are

usually considered the random access points for multiplexed streams.

SourceBuffer byte stream format specification
The specific byte stream format specification that describes the format of the byte stream

accepted by a SourceBuffer instance. The byte stream format specification, for a SourceBuffer

object, is selected based on the passed to the addSourceBuffer() call that created the

object.

SourceBuffer configuration
A specific set of tracks distributed across one or more SourceBuffer objects owned by a single

MediaSource instance.

Implementations MUST support at least 1 MediaSource object with the following configurations:

A single SourceBuffer with 1 audio track and/or 1 video track.

Two SourceBuffers with one handling a single audio track and the other handling a single

video track.

MediaSource objects MUST support each of the configurations above, but they are only required

to support one configuration at a time. Supporting multiple configurations at once or additional

configurations is a quality of implementation issue.

Track Description
A byte stream format specific structure that provides the Track ID, codec configuration, and other

metadata for a single track. Each track description inside a single initialization segment has a

unique Track ID. The user agent MUST run the append error algorithm if the Track ID is not

unique within the initialization segment.

Track ID
A Track ID is a byte stream format specific identifier that marks sections of the byte stream as

being part of a specific track. The Track ID in a track description identifies which sections of a

media segment belong to that track.

The MediaSource object represents a source of media data for an HTMLMediaElement. It keeps track

type

2. MediaSource Object

Media Source Extensions™ https://w3c.github.io/media-source/

9 of 74 27/01/2021, 07:45

of the readyState for this source as well as a list of SourceBuffer objects that can be used to add

media data to the presentation. MediaSource objects are created by the web application and then

attached to an HTMLMediaElement. The application uses the SourceBuffer objects in

sourceBuffers to add media data to this source. The HTMLMediaElement fetches this media data

from the MediaSource object when it is needed during playback.

Each MediaSource object has a live seekable range variable that stores a normalized TimeRanges

object. This variable is initialized to an empty TimeRanges object when the MediaSource object is

created, is maintained by setLiveSeekableRange() and clearLiveSeekableRange(), and is used in

HTMLMediaElement Extensions to modify HTMLMediaElement.seekable behavior.

Enumeration description

closed Indicates the source is not currently attached to a media element.

open
The source has been opened by a media element and is ready for data to be appended to

the SourceBuffer objects in sourceBuffers.

ended The source is still attached to a media element, but endOfStream() has been called.

Enumeration description

network

Terminates playback and signals that a network error has occured.

WebIDL

enum ReadyState {

"closed",

"open",

"ended"

};

WebIDL

enum EndOfStreamError {

"network",

"decode"

};

Media Source Extensions™ https://w3c.github.io/media-source/

10 of 74 27/01/2021, 07:45

NOTE

JavaScript applications SHOULD use this status code to terminate playback with a

network error. For example, if a network error occurs while fetching media data.

decode

Terminates playback and signals that a decoding error has occured.

NOTE

JavaScript applications SHOULD use this status code to terminate playback with a

decode error. For example, if a parsing error occurs while processing out-of-band

media data.

sourceBuffers of type SourceBufferList, readonly
Contains the list of SourceBuffer objects associated with this MediaSource. When readyState

WebIDL

[Exposed=Window]

interface MediaSource : EventTarget {

constructor();

 readonly attribute SourceBufferList sourceBuffers;

 readonly attribute SourceBufferList activeSourceBuffers;

 readonly attribute ReadyState readyState;

 attribute unrestricted double duration;

 attribute EventHandler onsourceopen;

 attribute EventHandler onsourceended;

 attribute EventHandler onsourceclose;

SourceBuffer addSourceBuffer (DOMString type);

undefined removeSourceBuffer (SourceBuffer sourceBuffer);

undefined endOfStream (optional EndOfStreamError error);

undefined setLiveSeekableRange (double start, double end);

undefined clearLiveSeekableRange ();

 static boolean isTypeSupported (DOMString type);

};

2.1 Attributes

Media Source Extensions™ https://w3c.github.io/media-source/

11 of 74 27/01/2021, 07:45

equals "closed" this list will be empty. Once readyState transitions to "open" SourceBuffer

objects can be added to this list by using addSourceBuffer().

activeSourceBuffers of type SourceBufferList, readonly
Contains the subset of sourceBuffers that are providing the selected video track, the enabled

audio track(s), and the "showing" or "hidden" text track(s).

SourceBuffer objects in this list MUST appear in the same order as they appear in the

sourceBuffers attribute; e.g., if only sourceBuffers[0] and sourceBuffers[3] are in

activeSourceBuffers, then activeSourceBuffers[0] MUST equal sourceBuffers[0] and

activeSourceBuffers[1] MUST equal sourceBuffers[3].

NOTE

The Changes to selected/enabled track state section describes how this attribute gets updated.

readyState of type ReadyState, readonly
Indicates the current state of the MediaSource object. When the MediaSource is created

readyState MUST be set to "closed".

duration of type unrestricted double
Allows the web application to set the presentation duration. The duration is initially set to NaN

when the MediaSource object is created.

On getting, run the following steps:

1. If the readyState attribute is "closed" then return NaN and abort these steps.

2. Return the current value of the attribute.

On setting, run the following steps:

1. If the value being set is negative or NaN then throw a TypeError exception and abort these

steps.

2. If the readyState attribute is not "open" then throw an InvalidStateError exception and

abort these steps.

3. If the updating attribute equals true on any SourceBuffer in sourceBuffers, then throw

an InvalidStateError exception and abort these steps.

4. Run the duration change algorithm with set to the value being assigned to this

attribute.

new duration

Media Source Extensions™ https://w3c.github.io/media-source/

12 of 74 27/01/2021, 07:45

NOTE

The duration change algorithm will adjust higher if there is any currently

buffered coded frame with a higher end time.

NOTE

appendBuffer() and endOfStream() can update the duration under certain

circumstances.

onsourceopen of type EventHandler
The event handler for the sourceopen event.

onsourceended of type EventHandler
The event handler for the sourceended event.

onsourceclose of type EventHandler
The event handler for the sourceclose event.

addSourceBuffer
Adds a new SourceBuffer to sourceBuffers.

Parameter Type Nullable Optional Description

type DOMString ✘ ✘

Return type: SourceBuffer

When this method is invoked, the user agent must run the following steps:

1. If is an empty string then throw a TypeError exception and abort these steps.

2. If contains a MIME type that is not supported or contains a MIME type that is not

supported with the types specified for the other SourceBuffer objects in sourceBuffers,

then throw a NotSupportedError exception and abort these steps.

3. If the user agent can't handle any more SourceBuffer objects or if creating a SourceBuffer

based on would result in an unsupported SourceBuffer configuration, then throw a

QuotaExceededError exception and abort these steps.

new duration

2.2 Methods

type

type

type

Media Source Extensions™ https://w3c.github.io/media-source/

13 of 74 27/01/2021, 07:45

NOTE

For example, a user agent MAY throw a QuotaExceededError exception if the media

element has reached the HAVE_METADATA readyState. This can occur if the user agent's

media engine does not support adding more tracks during playback.

4. If the readyState attribute is not in the "open" state then throw an InvalidStateError

exception and abort these steps.

5. Create a new SourceBuffer object and associated resources.

6. Set the on the new object to the value in the "Generate Timestamps

Flag" column of the byte stream format registry [MSE-REGISTRY] entry that is associated

with .

7. ↪ If the equals true:
Set the mode attribute on the new object to "sequence".

↪ Otherwise:
Set the mode attribute on the new object to "segments".

8. Add the new object to sourceBuffers and queue a task to fire a simple event named

addsourcebuffer at sourceBuffers.

9. Return the new object.

removeSourceBuffer
Removes a SourceBuffer from sourceBuffers.

Parameter Type Nullable Optional Description

sourceBuffer SourceBuffer✘ ✘

Return type: void

When this method is invoked, the user agent must run the following steps:

1. If specifies an object that is not in sourceBuffers then throw a

NotFoundError exception and abort these steps.

2. If the .updating attribute equals true, then run the following steps:

1. Abort the buffer append algorithm if it is running.

2. Set the .updating attribute to false.

generate timestamps flag

type

generate timestamps flag

sourceBuffer

sourceBuffer

sourceBuffer

Media Source Extensions™ https://w3c.github.io/media-source/

14 of 74 27/01/2021, 07:45

3. Queue a task to fire a simple event named abort at .

4. Queue a task to fire a simple event named updateend at .

3. Let equal the AudioTrackList object returned by

.audioTracks.

4. If the is not empty, then run the following steps:

1. Let equal the AudioTrackList object returned

by the audioTracks attribute on the HTMLMediaElement.

2. For each AudioTrack object in the , run the following

steps:

1. Set the sourceBuffer attribute on the AudioTrack object to null.

2. Remove the AudioTrack object from the .

NOTE

This should trigger AudioTrackList [HTML] logic to queue a task to fire a

trusted event named removetrack, that does not bubble and is not cancelable,

and that uses the TrackEvent interface, with the track attribute initialized to

the AudioTrack object, at the . If the

enabled attribute on the AudioTrack object was true at the beginning of this

removal step, then this should also trigger AudioTrackList [HTML] logic to

queue a task to fire a simple event named change at the

3. Remove the AudioTrack object from the .

NOTE

This should trigger AudioTrackList [HTML] logic to queue a task to fire a

trusted event named removetrack, that does not bubble and is not cancelable,

and that uses the TrackEvent interface, with the track attribute initialized to

the AudioTrack object, at the . If the enabled

attribute on the AudioTrack object was true at the beginning of this removal

step, then this should also trigger AudioTrackList [HTML] logic to queue a

task to fire a simple event named change at the

sourceBuffer

sourceBuffer

SourceBuffer audioTracks list

sourceBuffer

SourceBuffer audioTracks list

HTMLMediaElement audioTracks list

SourceBuffer audioTracks list

HTMLMediaElement audioTracks list

HTMLMediaElement audioTracks list

HTMLMediaElement

audioTracks list

SourceBuffer audioTracks list

SourceBuffer audioTracks list

SourceBuffer audioTracks list

Media Source Extensions™ https://w3c.github.io/media-source/

15 of 74 27/01/2021, 07:45

5. Let equal the VideoTrackList object returned by

.videoTracks.

6. If the is not empty, then run the following steps:

1. Let equal the VideoTrackList object returned

by the videoTracks attribute on the HTMLMediaElement.

2. For each VideoTrack object in the , run the following

steps:

1. Set the sourceBuffer attribute on the VideoTrack object to null.

2. Remove the VideoTrack object from the .

NOTE

This should trigger VideoTrackList [HTML] logic to queue a task to fire a

trusted event named removetrack, that does not bubble and is not cancelable,

and that uses the TrackEvent interface, with the track attribute initialized to

the VideoTrack object, at the . If the

selected attribute on the VideoTrack object was true at the beginning of this

removal step, then this should also trigger VideoTrackList [HTML] logic to

queue a task to fire a simple event named change at the

3. Remove the VideoTrack object from the .

NOTE

This should trigger VideoTrackList [HTML] logic to queue a task to fire a

trusted event named removetrack, that does not bubble and is not cancelable,

and that uses the TrackEvent interface, with the track attribute initialized to

the VideoTrack object, at the . If the selected

attribute on the VideoTrack object was true at the beginning of this removal

step, then this should also trigger VideoTrackList [HTML] logic to queue a

task to fire a simple event named change at the

7. Let equal the TextTrackList object returned by

.textTracks.

SourceBuffer videoTracks list

sourceBuffer

SourceBuffer videoTracks list

HTMLMediaElement videoTracks list

SourceBuffer videoTracks list

HTMLMediaElement videoTracks list

HTMLMediaElement videoTracks list

HTMLMediaElement

videoTracks list

SourceBuffer videoTracks list

SourceBuffer videoTracks list

SourceBuffer videoTracks list

SourceBuffer textTracks list

sourceBuffer

Media Source Extensions™ https://w3c.github.io/media-source/

16 of 74 27/01/2021, 07:45

8. If the is not empty, then run the following steps:

1. Let equal the TextTrackList object returned by

the textTracks attribute on the HTMLMediaElement.

2. For each TextTrack object in the , run the following steps:

1. Set the sourceBuffer attribute on the TextTrack object to null.

2. Remove the TextTrack object from the .

NOTE

This should trigger TextTrackList [HTML] logic to queue a task to fire a

trusted event named removetrack, that does not bubble and is not cancelable,

and that uses the TrackEvent interface, with the track attribute initialized to

the TextTrack object, at the . If the mode

attribute on the TextTrack object was "showing" or "hidden" at the

beginning of this removal step, then this should also trigger TextTrackList

[HTML] logic to queue a task to fire a simple event named change at the

.

3. Remove the TextTrack object from the .

NOTE

This should trigger TextTrackList [HTML] logic to queue a task to fire a

trusted event named removetrack, that does not bubble and is not cancelable,

and that uses the TrackEvent interface, with the track attribute initialized to

the TextTrack object, at the . If the mode attribute

on the TextTrack object was "showing" or "hidden" at the beginning of this

removal step, then this should also trigger TextTrackList [HTML] logic to

queue a task to fire a simple event named change at the

.

9. If is in activeSourceBuffers, then remove from

activeSourceBuffers and queue a task to fire a simple event named removesourcebuffer

at the SourceBufferList returned by activeSourceBuffers.

10. Remove from sourceBuffers and queue a task to fire a simple event named

removesourcebuffer at the SourceBufferList returned by sourceBuffers.

SourceBuffer textTracks list

HTMLMediaElement textTracks list

SourceBuffer textTracks list

HTMLMediaElement textTracks list

HTMLMediaElement textTracks list

HTMLMediaElement textTracks list

SourceBuffer textTracks list

SourceBuffer textTracks list

SourceBuffer

textTracks list

sourceBuffer sourceBuffer

sourceBuffer

Media Source Extensions™ https://w3c.github.io/media-source/

17 of 74 27/01/2021, 07:45

11. Destroy all resources for .

endOfStream
Signals the end of the stream.

Parameter Type Nullable Optional Description

error EndOfStreamError ✘ ✔

Return type: void

When this method is invoked, the user agent must run the following steps:

1. If the readyState attribute is not in the "open" state then throw an InvalidStateError

exception and abort these steps.

2. If the updating attribute equals true on any SourceBuffer in sourceBuffers, then throw

an InvalidStateError exception and abort these steps.

3. Run the end of stream algorithm with the parameter set to .

setLiveSeekableRange
Updates the variable used in HTMLMediaElement Extensions to modify

HTMLMediaElement.seekable behavior.

Parameter Type Nullable Optional Description

start double ✘ ✘

The start of the range, in seconds measured from

presentation start time. While set, and if duration

equals positive Infinity,

HTMLMediaElement.seekable will return a non-

empty TimeRanges object with a lowest range start

timestamp no greater than .

end double ✘ ✘

The end of range, in seconds measured from

presentation start time. While set, and if duration

equals positive Infinity,

HTMLMediaElement.seekable will return a non-

empty TimeRanges object with a highest range end

timestamp no less than .

Return type: void

When this method is invoked, the user agent must run the following steps:

1. If the readyState attribute is not "open" then throw an InvalidStateError exception and

sourceBuffer

error error

live seekable range

start

end

Media Source Extensions™ https://w3c.github.io/media-source/

18 of 74 27/01/2021, 07:45

abort these steps.

2. If is negative or greater than , then throw a TypeError exception and abort these

steps.

3. Set to be a new normalized TimeRanges object containing a single range

whose start position is and end position is .

clearLiveSeekableRange
Updates the variable used in HTMLMediaElement Extensions to modify

HTMLMediaElement.seekable behavior.

No parameters.

Return type: void

When this method is invoked, the user agent must run the following steps:

1. If the readyState attribute is not "open" then throw an InvalidStateError exception and

abort these steps.

2. If contains a range, then set to be a new empty

TimeRanges object.

isTypeSupported, static
Check to see whether the MediaSource is capable of creating SourceBuffer objects for the

specified MIME type.

NOTE

If true is returned from this method, it only indicates that the MediaSource implementation is

capable of creating SourceBuffer objects for the specified MIME type. An

addSourceBuffer() call SHOULD still fail if sufficient resources are not available to support

the addition of a new SourceBuffer.

NOTE

This method returning true implies that HTMLMediaElement.canPlayType() will return

"maybe" or "probably" since it does not make sense for a MediaSource to support a type the

HTMLMediaElement knows it cannot play.

Parameter Type Nullable Optional Description

type DOMString ✘ ✘

start end

live seekable range

start end

live seekable range

live seekable range live seekable range

Media Source Extensions™ https://w3c.github.io/media-source/

19 of 74 27/01/2021, 07:45

Return type: boolean

When this method is invoked, the user agent must run the following steps:

1. If is an empty string, then return false.

2. If does not contain a valid MIME type string, then return false.

3. If contains a media type or media subtype that the MediaSource does not support, then

return false.

4. If contains a codec that the MediaSource does not support, then return false.

5. If the MediaSource does not support the specified combination of media type, media

subtype, and codecs then return false.

6. Return true.

Event name Interface Dispatched when...

sourceopen Event readyState transitions from "closed" to "open" or from "ended" to

"open".

sourceended Event readyState transitions from "open" to "ended".

sourceclose Event readyState transitions from "open" to "closed" or "ended" to "closed".

A MediaSource object can be attached to a media element by assigning a MediaSource object URL to

the media element src attribute or the src attribute of a <source> inside a media element. A

MediaSource object URL is created by passing a MediaSource object to createObjectURL().

If the resource fetch algorithm was invoked with a media provider object that is a MediaSource object

or a URL record whose object is a MediaSource object, then let mode be local, skip the first step in the

resource fetch algorithm (which may otherwise set mode to remote) and add the steps and

clarifications below to the "Otherwise (mode is local)" section of the resource fetch algorithm.

type

type

type

type

2.3 Event Summary

2.4 Algorithms

2.4.1 Attaching to a media element

Media Source Extensions™ https://w3c.github.io/media-source/

20 of 74 27/01/2021, 07:45

NOTE

The resource fetch algorithm's first step is expected to eventually align with selecting local mode

for URL records whose objects are media provider objects. The intent is that if the

HTMLMediaElement's src attribute or selected child <source>'s src attribute is a blob: URL

matching a MediaSource object URL when the respective src attribute was last changed, then that

MediaSource object is used as the media provider object and current media resource in the local

mode logic in the resource fetch algorithm. This also means that the remote mode logic that

includes observance of any preload attribute is skipped when a MediaSource object is attached.

Even with that eventual change to [HTML], the execution of the following steps at the beginning

of the local mode logic is still required when the current media resource is a MediaSource object.

NOTE

Relative to the action which triggered the media element's resource selection algorithm, these steps

are asynchronous. The resource fetch algorithm is run after the task that invoked the resource

selection algorithm is allowed to continue and a stable state is reached. Implementations may

delay the steps in the "Otherwise" clause, below, until the MediaSource object is ready for use.

↪ If readyState is NOT set to "closed"
Run the "If the media data cannot be fetched at all, due to network errors, causing the user

agent to give up trying to fetch the resource" steps of the resource fetch algorithm's media

data processing steps list.

↪ Otherwise

1. Set the media element's delaying-the-load-event-flag to false.

2. Set the readyState attribute to "open".

3. Queue a task to fire a simple event named sourceopen at the MediaSource.

4. Continue the resource fetch algorithm by running the remaining "Otherwise (mode is

local)" steps, with these clarifications:

1. Text in the resource fetch algorithm or the media data processing steps list that

refers to "the download", "bytes received", or "whenever new data for the current

media resource becomes available" refers to data passed in via appendBuffer().

2. References to HTTP in the resource fetch algorithm and the media data processing

steps list do not apply because the HTMLMediaElement does not fetch media data

via HTTP when a MediaSource is attached.

Media Source Extensions™ https://w3c.github.io/media-source/

21 of 74 27/01/2021, 07:45

NOTE

An attached MediaSource does not use the remote mode steps in the resource fetch algorithm, so

the media element will not fire "suspend" events. Though future versions of this specification will

likely remove "progress" and "stalled" events from a media element with an attached

MediaSource, user agents conforming to this version of the specification may still fire these two

events as these [HTML] references changed after implementations of this specification stabilized.

The following steps are run in any case where the media element is going to transition to

NETWORK_EMPTY and queue a task to fire a simple event named emptied at the media element.

These steps SHOULD be run right before the transition.

1. Set the readyState attribute to "closed".

2. Update duration to NaN.

3. Remove all the SourceBuffer objects from activeSourceBuffers.

4. Queue a task to fire a simple event named removesourcebuffer at activeSourceBuffers.

5. Remove all the SourceBuffer objects from sourceBuffers.

6. Queue a task to fire a simple event named removesourcebuffer at sourceBuffers.

7. Queue a task to fire a simple event named sourceclose at the MediaSource.

NOTE

Going forward, this algorithm is intended to be externally called and run in any case where the

attached MediaSource, if any, must be detached from the media element. It MAY be called on

HTMLMediaElement [HTML] operations like load() and resource fetch algorithm failures in

addition to, or in place of, when the media element transitions to NETWORK_EMPTY. Resource

fetch algorithm failures are those which abort either the resource fetch algorithm or the resource

selection algorithm, with the exception that the "Final step" [HTML] is not considered a failure

that triggers detachment.

2.4.2 Detaching from a media element

2.4.3 Seeking

Media Source Extensions™ https://w3c.github.io/media-source/

22 of 74 27/01/2021, 07:45

Run the following steps as part of the "Wait until the user agent has established whether or not the

media data for the new playback position is available, and, if it is, until it has decoded enough data to

play back that position" step of the seek algorithm:

1. NOTE

The media element looks for media segments containing the in each

SourceBuffer object in activeSourceBuffers. Any position within a TimeRange in the

current value of the HTMLMediaElement.buffered attribute has all necessary media segments

buffered for that position.

↪ If is not in any TimeRange of HTMLMediaElement.buffered

1. If the HTMLMediaElement.readyState attribute is greater than HAVE_METADATA,

then set the HTMLMediaElement.readyState attribute to HAVE_METADATA.

NOTE

Per HTMLMediaElement ready states [HTML] logic,

HTMLMediaElement.readyState changes may trigger events on the

HTMLMediaElement.

2. The media element waits until an appendBuffer() call causes the coded frame

processing algorithm to set the HTMLMediaElement.readyState attribute to a

value greater than HAVE_METADATA.

NOTE

The web application can use buffered and HTMLMediaElement.buffered to

determine what the media element needs to resume playback.

↪ Otherwise
Continue

new playback position

new playback position

Media Source Extensions™ https://w3c.github.io/media-source/

23 of 74 27/01/2021, 07:45

NOTE

If the readyState attribute is "ended" and the is within a

TimeRange currently in HTMLMediaElement.buffered, then the seek operation

must continue to completion here even if one or more currently selected or enabled

track buffers' largest range end timestamp is less than . This

condition should only occur due to logic in buffered when readyState is

"ended".

2. The media element resets all decoders and initializes each one with data from the appropriate

initialization segment.

3. The media element feeds coded frames from the active track buffers into the decoders starting

with the closest random access point before the .

4. Resume the seek algorithm at the "Await a stable state" step.

The following steps are periodically run during playback to make sure that all of the SourceBuffer

objects in activeSourceBuffers have enough data to ensure uninterrupted playback. Changes to

activeSourceBuffers also cause these steps to run because they affect the conditions that trigger

state transitions.

Having enough data to ensure uninterrupted playback is an implementation specific condition where

the user agent determines that it currently has enough data to play the presentation without stalling for

a meaningful period of time. This condition is constantly evaluated to determine when to transition the

media element into and out of the HAVE_ENOUGH_DATA ready state. These transitions indicate when the

user agent believes it has enough data buffered or it needs more data respectively.

NOTE

An implementation MAY choose to use bytes buffered, time buffered, the append rate, or any other

metric it sees fit to determine when it has enough data. The metrics used MAY change during

playback so web applications SHOULD only rely on the value of HTMLMediaElement.readyState

to determine whether more data is needed or not.

new playback position

new playback position

new playback position

2.4.4 SourceBuffer Monitoring

Media Source Extensions™ https://w3c.github.io/media-source/

24 of 74 27/01/2021, 07:45

NOTE

When the media element needs more data, the user agent SHOULD transition it from

HAVE_ENOUGH_DATA to HAVE_FUTURE_DATA early enough for a web application to be able to

respond without causing an interruption in playback. For example, transitioning when the current

playback position is 500ms before the end of the buffered data gives the application roughly

500ms to append more data before playback stalls.

↪ If the the HTMLMediaElement.readyState attribute equals HAVE_NOTHING:

1. Abort these steps.

↪ If HTMLMediaElement.buffered does not contain a TimeRange for the current playback
position:

1. Set the HTMLMediaElement.readyState attribute to HAVE_METADATA.

NOTE

Per HTMLMediaElement ready states [HTML] logic,

HTMLMediaElement.readyState changes may trigger events on the

HTMLMediaElement.

2. Abort these steps.

↪ If HTMLMediaElement.buffered contains a TimeRange that includes the current playback
position and enough data to ensure uninterrupted playback:

1. Set the HTMLMediaElement.readyState attribute to HAVE_ENOUGH_DATA.

NOTE

Per HTMLMediaElement ready states [HTML] logic,

HTMLMediaElement.readyState changes may trigger events on the

HTMLMediaElement.

2. Playback may resume at this point if it was previously suspended by a transition to

HAVE_CURRENT_DATA.

3. Abort these steps.

↪ If HTMLMediaElement.buffered contains a TimeRange that includes the current playback
position and some time beyond the current playback position, then run the following steps:

Media Source Extensions™ https://w3c.github.io/media-source/

25 of 74 27/01/2021, 07:45

1. Set the HTMLMediaElement.readyState attribute to HAVE_FUTURE_DATA.

NOTE

Per HTMLMediaElement ready states [HTML] logic,

HTMLMediaElement.readyState changes may trigger events on the

HTMLMediaElement.

2. Playback may resume at this point if it was previously suspended by a transition to

HAVE_CURRENT_DATA.

3. Abort these steps.

↪ If HTMLMediaElement.buffered contains a TimeRange that ends at the current playback
position and does not have a range covering the time immediately after the current
position:

1. Set the HTMLMediaElement.readyState attribute to HAVE_CURRENT_DATA.

NOTE

Per HTMLMediaElement ready states [HTML] logic,

HTMLMediaElement.readyState changes may trigger events on the

HTMLMediaElement.

2. Playback is suspended at this point since the media element doesn't have enough data to

advance the media timeline.

3. Abort these steps.

During playback activeSourceBuffers needs to be updated if the selected video track, the enabled

audio track(s), or a text track mode changes. When one or more of these changes occur the following

steps need to be followed.

↪ If the selected video track changes, then run the following steps:

1. If the SourceBuffer associated with the previously selected video track is not

associated with any other enabled tracks, run the following steps:

1. Remove the SourceBuffer from activeSourceBuffers.

2.4.5 Changes to selected/enabled track state

Media Source Extensions™ https://w3c.github.io/media-source/

26 of 74 27/01/2021, 07:45

2. Queue a task to fire a simple event named removesourcebuffer at

activeSourceBuffers

2. If the SourceBuffer associated with the newly selected video track is not already in

activeSourceBuffers, run the following steps:

1. Add the SourceBuffer to activeSourceBuffers.

2. Queue a task to fire a simple event named addsourcebuffer at

activeSourceBuffers

↪ If an audio track becomes disabled and the SourceBuffer associated with this track is not
associated with any other enabled or selected track, then run the following steps:

1. Remove the SourceBuffer associated with the audio track from

activeSourceBuffers

2. Queue a task to fire a simple event named removesourcebuffer at

activeSourceBuffers

↪ If an audio track becomes enabled and the SourceBuffer associated with this track is not
already in activeSourceBuffers, then run the following steps:

1. Add the SourceBuffer associated with the audio track to activeSourceBuffers

2. Queue a task to fire a simple event named addsourcebuffer at activeSourceBuffers

↪ If a text track mode becomes "disabled" and the SourceBuffer associated with this track is
not associated with any other enabled or selected track, then run the following steps:

1. Remove the SourceBuffer associated with the text track from activeSourceBuffers

2. Queue a task to fire a simple event named removesourcebuffer at

activeSourceBuffers

↪ If a text track mode becomes "showing" or "hidden" and the SourceBuffer associated with
this track is not already in activeSourceBuffers, then run the following steps:

1. Add the SourceBuffer associated with the text track to activeSourceBuffers

2. Queue a task to fire a simple event named addsourcebuffer at activeSourceBuffers

Follow these steps when duration needs to change to a .

2.4.6 Duration change

new duration

Media Source Extensions™ https://w3c.github.io/media-source/

27 of 74 27/01/2021, 07:45

1. If the current value of duration is equal to , then return.

2. If is less than the highest presentation timestamp of any buffered coded frames for

all SourceBuffer objects in sourceBuffers, then throw an InvalidStateError exception and

abort these steps.

NOTE

Duration reductions that would truncate currently buffered media are disallowed. When

truncation is necessary, use remove() to reduce the buffered range before updating duration.

3. Let be the largest track buffer ranges end time across all the track buffers across

all SourceBuffer objects in sourceBuffers.

4. If is less than , then

NOTE

This condition can occur because the coded frame removal algorithm preserves coded frames

that start before the start of the removal range.

1. Update to equal .

5. Update duration to .

6. Update the media duration to and run the HTMLMediaElement duration change

algorithm.

This algorithm gets called when the application signals the end of stream via an endOfStream() call

or an algorithm needs to signal a decode error. This algorithm takes an parameter that indicates

whether an error will be signalled.

1. Change the readyState attribute value to "ended".

2. Queue a task to fire a simple event named sourceended at the MediaSource.

3. ↪ If is not set

1. Run the duration change algorithm with set to the largest track

buffer ranges end time across all the track buffers across all SourceBuffer objects

new duration

new duration

highest end time

new duration highest end time

new duration highest end time

new duration

new duration

2.4.7 End of stream algorithm

error

error

new duration

Media Source Extensions™ https://w3c.github.io/media-source/

28 of 74 27/01/2021, 07:45

in sourceBuffers.

NOTE

This allows the duration to properly reflect the end of the appended media

segments. For example, if the duration was explicitly set to 10 seconds and

only media segments for 0 to 5 seconds were appended before endOfStream()

was called, then the duration will get updated to 5 seconds.

2. Notify the media element that it now has all of the media data.

↪ If is set to "network"

↪ If the HTMLMediaElement.readyState attribute equals HAVE_NOTHING
Run the "If the media data cannot be fetched at all, due to network errors,

causing the user agent to give up trying to fetch the resource" steps of the

resource fetch algorithm's media data processing steps list.

↪ If the HTMLMediaElement.readyState attribute is greater than HAVE_NOTHING
Run the "If the connection is interrupted after some media data has been

received, causing the user agent to give up trying to fetch the resource" steps

of the resource fetch algorithm's media data processing steps list.

↪ If is set to "decode"

↪ If the HTMLMediaElement.readyState attribute equals HAVE_NOTHING
Run the "If the media data can be fetched but is found by inspection to be in

an unsupported format, or can otherwise not be rendered at all" steps of the

resource fetch algorithm's media data processing steps list.

↪ If the HTMLMediaElement.readyState attribute is greater than HAVE_NOTHING
Run the media data is corrupted steps of the resource fetch algorithm's media

data processing steps list.

error

error

3. SourceBuffer Object

WebIDL

enum AppendMode {

"segments",

"sequence"

Media Source Extensions™ https://w3c.github.io/media-source/

29 of 74 27/01/2021, 07:45

Enumeration description

segments
The timestamps in the media segment determine where the coded frames are placed in

the presentation. Media segments can be appended in any order.

sequence

Media segments will be treated as adjacent in time independent of the timestamps in

the media segment. Coded frames in a new media segment will be placed

immediately after the coded frames in the previous media segment. The

timestampOffset attribute will be updated if a new offset is needed to make the new

media segments adjacent to the previous media segment. Setting the

timestampOffset attribute in "sequence" mode allows a media segment to be

placed at a specific position in the timeline without any knowledge of the timestamps

in the media segment.

};

WebIDL

[Exposed=Window]

interface SourceBuffer : EventTarget {

 attribute AppendMode mode;

 readonly attribute boolean updating;

 readonly attribute TimeRanges buffered;

 attribute double timestampOffset;

 readonly attribute AudioTrackList audioTracks;

 readonly attribute VideoTrackList videoTracks;

 readonly attribute TextTrackList textTracks;

 attribute double appendWindowStart;

 attribute unrestricted double appendWindowEnd;

 attribute EventHandler onupdatestart;

 attribute EventHandler onupdate;

 attribute EventHandler onupdateend;

 attribute EventHandler onerror;

 attribute EventHandler onabort;

undefined appendBuffer (BufferSource data);

undefined abort ();

undefined remove (double start, unrestricted double end);

};

Media Source Extensions™ https://w3c.github.io/media-source/

30 of 74 27/01/2021, 07:45

mode of type AppendMode
Controls how a sequence of media segments are handled. This attribute is initially set by

addSourceBuffer() after the object is created.

On getting, Return the initial value or the last value that was successfully set.

On setting, run the following steps:

1. If this object has been removed from the sourceBuffers attribute of the parent media

source, then throw an InvalidStateError exception and abort these steps.

2. If the updating attribute equals true, then throw an InvalidStateError exception and

abort these steps.

3. Let equal the new value being assigned to this attribute.

4. If equals true and equals "segments", then throw a

TypeError exception and abort these steps.

5. If the readyState attribute of the parent media source is in the "ended" state then run the

following steps:

1. Set the readyState attribute of the parent media source to "open"

2. Queue a task to fire a simple event named sourceopen at the parent media source.

6. If the equals PARSING_MEDIA_SEGMENT, then throw an

InvalidStateError and abort these steps.

7. If the equals "sequence", then set the to the

.

8. Update the attribute to .

updating of type boolean, readonly
Indicates whether the asynchronous continuation of an appendBuffer() or remove() operation

is still being processed. This attribute is initially set to false when the object is created.

buffered of type TimeRanges, readonly
Indicates what TimeRanges are buffered in the SourceBuffer. This attribute is initially set to an

empty TimeRanges object when the object is created.

When the attribute is read the following steps MUST occur:

3.1 Attributes

new mode

generate timestamps flag new mode

append state

new mode group start timestamp group end

timestamp

new mode

Media Source Extensions™ https://w3c.github.io/media-source/

31 of 74 27/01/2021, 07:45

1. If this object has been removed from the sourceBuffers attribute of the parent media

source then throw an InvalidStateError exception and abort these steps.

2. Let be the largest track buffer ranges end time across all the track buffers

managed by this SourceBuffer object.

3. Let equal a TimeRange object containing a single range from 0 to

.

4. For each audio and video track buffer managed by this SourceBuffer, run the following

steps:

NOTE

Text track-buffers are included in the calculation of , above, but

excluded from the buffered range calculation here. They are not necessarily continuous,

nor should any discontinuity within them trigger playback stall when the other media

tracks are continuous over the same time range.

1. Let equal the track buffer ranges for the current track buffer.

2. If readyState is "ended", then set the end time on the last range in to

.

3. Let equal the intersection between the and

the .

4. Replace the ranges in with the .

5. If does not contain the exact same range information as the current value

of this attribute, then update the current value of this attribute to .

6. Return the current value of this attribute.

timestampOffset of type double
Controls the offset applied to timestamps inside subsequent media segments that are appended to

this SourceBuffer. The timestampOffset is initially set to 0 which indicates that no offset is

being applied.

On getting, Return the initial value or the last value that was successfully set.

On setting, run the following steps:

highest end time

intersection ranges highest

end time

highest end time

track ranges

track ranges

highest end time

new intersection ranges intersection ranges

track ranges

intersection ranges new intersection ranges

intersection ranges

intersection ranges

Media Source Extensions™ https://w3c.github.io/media-source/

32 of 74 27/01/2021, 07:45

1. Let equal the new value being assigned to this attribute.

2. If this object has been removed from the sourceBuffers attribute of the parent media

source, then throw an InvalidStateError exception and abort these steps.

3. If the updating attribute equals true, then throw an InvalidStateError exception and

abort these steps.

4. If the readyState attribute of the parent media source is in the "ended" state then run the

following steps:

1. Set the readyState attribute of the parent media source to "open"

2. Queue a task to fire a simple event named sourceopen at the parent media source.

5. If the equals PARSING_MEDIA_SEGMENT, then throw an

InvalidStateError and abort these steps.

6. If the mode attribute equals "sequence", then set the to

.

7. Update the attribute to .

audioTracks of type AudioTrackList, readonly
The list of AudioTrack objects created by this object.

videoTracks of type VideoTrackList, readonly
The list of VideoTrack objects created by this object.

textTracks of type TextTrackList, readonly
The list of TextTrack objects created by this object.

appendWindowStart of type double
The presentation timestamp for the start of the append window. This attribute is initially set to the

presentation start time.

On getting, Return the initial value or the last value that was successfully set.

On setting, run the following steps:

1. If this object has been removed from the sourceBuffers attribute of the parent media

source, then throw an InvalidStateError exception and abort these steps.

2. If the updating attribute equals true, then throw an InvalidStateError exception and

abort these steps.

new timestamp offset

append state

group start timestamp new

timestamp offset

new timestamp offset

Media Source Extensions™ https://w3c.github.io/media-source/

33 of 74 27/01/2021, 07:45

3. If the new value is less than 0 or greater than or equal to appendWindowEnd then throw a

TypeError exception and abort these steps.

4. Update the attribute to the new value.

appendWindowEnd of type unrestricted double
The presentation timestamp for the end of the append window. This attribute is initially set to

positive Infinity.

On getting, Return the initial value or the last value that was successfully set.

On setting, run the following steps:

1. If this object has been removed from the sourceBuffers attribute of the parent media

source, then throw an InvalidStateError exception and abort these steps.

2. If the updating attribute equals true, then throw an InvalidStateError exception and

abort these steps.

3. If the new value equals NaN, then throw a TypeError and abort these steps.

4. If the new value is less than or equal to appendWindowStart then throw a TypeError

exception and abort these steps.

5. Update the attribute to the new value.

onupdatestart of type EventHandler
The event handler for the updatestart event.

onupdate of type EventHandler
The event handler for the update event.

onupdateend of type EventHandler
The event handler for the updateend event.

onerror of type EventHandler
The event handler for the error event.

onabort of type EventHandler
The event handler for the abort event.

appendBuffer

3.2 Methods

Media Source Extensions™ https://w3c.github.io/media-source/

34 of 74 27/01/2021, 07:45

Appends the segment data in an BufferSource[WEBIDL] to the source buffer.

Parameter Type Nullable Optional Description

data BufferSource ✘ ✘

Return type: void

When this method is invoked, the user agent must run the following steps:

1. Run the prepare append algorithm.

2. Add to the end of the .

3. Set the updating attribute to true.

4. Queue a task to fire a simple event named updatestart at this SourceBuffer object.

5. Asynchronously run the buffer append algorithm.

abort
Aborts the current segment and resets the segment parser.

No parameters.

Return type: void

When this method is invoked, the user agent must run the following steps:

1. If this object has been removed from the sourceBuffers attribute of the parent media

source then throw an InvalidStateError exception and abort these steps.

2. If the readyState attribute of the parent media source is not in the "open" state then throw

an InvalidStateError exception and abort these steps.

3. If the range removal algorithm is running, then throw an InvalidStateError exception and

abort these steps.

4. If the updating attribute equals true, then run the following steps:

1. Abort the buffer append algorithm if it is running.

2. Set the updating attribute to false.

3. Queue a task to fire a simple event named abort at this SourceBuffer object.

4. Queue a task to fire a simple event named updateend at this SourceBuffer object.

data input buffer

Media Source Extensions™ https://w3c.github.io/media-source/

35 of 74 27/01/2021, 07:45

5. Run the reset parser state algorithm.

6. Set appendWindowStart to the presentation start time.

7. Set appendWindowEnd to positive Infinity.

remove
Removes media for a specific time range.

Parameter Type Nullable Optional Description

start double ✘ ✘
The start of the removal range, in

seconds measured from presentation start

time.

end
unrestricted

double
✘ ✘

The end of the removal range, in seconds

measured from presentation start time.

Return type: void

When this method is invoked, the user agent must run the following steps:

1. If this object has been removed from the sourceBuffers attribute of the parent media

source then throw an InvalidStateError exception and abort these steps.

2. If the updating attribute equals true, then throw an InvalidStateError exception and

abort these steps.

3. If duration equals NaN, then throw a TypeError exception and abort these steps.

4. If is negative or greater than duration, then throw a TypeError exception and abort

these steps.

5. If is less than or equal to or equals NaN, then throw a TypeError exception

and abort these steps.

6. If the readyState attribute of the parent media source is in the "ended" state then run the

following steps:

1. Set the readyState attribute of the parent media source to "open"

2. Queue a task to fire a simple event named sourceopen at the parent media source.

7. Run the range removal algorithm with and as the start and end of the removal

range.

start

end start end

start end

Media Source Extensions™ https://w3c.github.io/media-source/

36 of 74 27/01/2021, 07:45

A track buffer stores the track descriptions and coded frames for an individual track. The track buffer

is updated as initialization segments and media segments are appended to the SourceBuffer.

Each track buffer has a last decode timestamp variable that stores the decode timestamp of the last

coded frame appended in the current coded frame group. The variable is initially unset to indicate that

no coded frames have been appended yet.

Each track buffer has a last frame duration variable that stores the coded frame duration of the last

coded frame appended in the current coded frame group. The variable is initially unset to indicate that

no coded frames have been appended yet.

Each track buffer has a highest end timestamp variable that stores the highest coded frame end

timestamp across all coded frames in the current coded frame group that were appended to this track

buffer. The variable is initially unset to indicate that no coded frames have been appended yet.

Each track buffer has a need random access point flag variable that keeps track of whether the track

buffer is waiting for a random access point coded frame. The variable is initially set to true to indicate

that random access point coded frame is needed before anything can be added to the track buffer.

Each track buffer has a track buffer ranges variable that represents the presentation time ranges

occupied by the coded frames currently stored in the track buffer.

NOTE

For track buffer ranges, these presentation time ranges are based on presentation timestamps,

frame durations, and potentially coded frame group start times for coded frame groups across track

buffers in a muxed SourceBuffer.

For specification purposes, this information is treated as if it were stored in a normalized TimeRanges

object. Intersected track buffer ranges are used to report HTMLMediaElement.buffered, and MUST

therefore support uninterrupted playback within each range of HTMLMediaElement.buffered.

3.3 Track Buffers

Media Source Extensions™ https://w3c.github.io/media-source/

37 of 74 27/01/2021, 07:45

NOTE

These coded frame group start times differ slightly from those mentioned in the coded frame

processing algorithm in that they are the earliest presentation timestamp across all track buffers

following a discontinuity. Discontinuities can occur within the coded frame processing algorithm

or result from the coded frame removal algorithm, regardless of mode. The threshold for

determining disjointness of track buffer ranges is implementation-specific. For example, to reduce

unexpected playback stalls, implementations MAY approximate the coded frame processing

algorithm's discontinuity detection logic by coalescing adjacent ranges separated by a gap smaller

than 2 times the maximum frame duration buffered so far in this track buffer. Implementations

MAY also use coded frame group start times as range start times across track buffers in a muxed

SourceBuffer to further reduce unexpected playback stalls.

Event name Interface Dispatched when...

updatestart Event updating transitions from false to true.

update Event The append or remove has successfully completed. updating transitions

from true to false.

updateend Event The append or remove has ended.

error Event An error occurred during the append. updating transitions from true to

false.

abort Event The append or remove was aborted by an abort() call. updating

transitions from true to false.

All SourceBuffer objects have an internal append state variable that keeps track of the high-level

segment parsing state. It is initially set to WAITING_FOR_SEGMENT and can transition to the

following states as data is appended.

Append state name Description

3.4 Event Summary

3.5 Algorithms

3.5.1 Segment Parser Loop

Media Source Extensions™ https://w3c.github.io/media-source/

38 of 74 27/01/2021, 07:45

Append state name Description

WAITING_FOR_SEGMENT Waiting for the start of an initialization segment or media segment

to be appended.

PARSING_INIT_SEGMENT Currently parsing an initialization segment.

PARSING_MEDIA_SEGMENT Currently parsing a media segment.

The input buffer is a byte buffer that is used to hold unparsed bytes across appendBuffer() calls. The

buffer is empty when the SourceBuffer object is created.

The buffer full flag keeps track of whether appendBuffer() is allowed to accept more bytes. It is set

to false when the SourceBuffer object is created and gets updated as data is appended and removed.

The group start timestamp variable keeps track of the starting timestamp for a new coded frame group

in the "sequence" mode. It is unset when the SourceBuffer object is created and gets updated when

the mode attribute equals "sequence" and the timestampOffset attribute is set, or the coded frame

processing algorithm runs.

The group end timestamp variable stores the highest coded frame end timestamp across all coded

frames in the current coded frame group. It is set to 0 when the SourceBuffer object is created and gets

updated by the coded frame processing algorithm.

NOTE

The stores the highest coded frame end timestamp across all track buffers in

a SourceBuffer. Therefore, care should be taken in setting the mode attribute when appending

multiplexed segments in which the timestamps are not aligned across tracks.

The generate timestamps flag is a boolean variable that keeps track of whether timestamps need to be

generated for the coded frames passed to the coded frame processing algorithm. This flag is set by

addSourceBuffer() when the SourceBuffer object is created.

When the segment parser loop algorithm is invoked, run the following steps:

1. Loop Top: If the is empty, then jump to the need more data step below.

2. If the contains bytes that violate the SourceBuffer byte stream format specification,

then run the append error algorithm and abort this algorithm.

3. Remove any bytes that the byte stream format specifications say MUST be ignored from the start

of the .

group end timestamp

input buffer

input buffer

input buffer

Media Source Extensions™ https://w3c.github.io/media-source/

39 of 74 27/01/2021, 07:45

4. If the equals WAITING_FOR_SEGMENT, then run the following steps:

1. If the beginning of the indicates the start of an initialization segment, set the

 to PARSING_INIT_SEGMENT.

2. If the beginning of the indicates the start of a media segment, set to

PARSING_MEDIA_SEGMENT.

3. Jump to the loop top step above.

5. If the equals PARSING_INIT_SEGMENT, then run the following steps:

1. If the does not contain a complete initialization segment yet, then jump to the

need more data step below.

2. Run the initialization segment received algorithm.

3. Remove the initialization segment bytes from the beginning of the .

4. Set to WAITING_FOR_SEGMENT.

5. Jump to the loop top step above.

6. If the equals PARSING_MEDIA_SEGMENT, then run the following steps:

1. If the is false, then run the append error algorithm

and abort this algorithm.

2. If the contains one or more complete coded frames, then run the coded frame

processing algorithm.

NOTE

The frequency at which the coded frame processing algorithm is run is implementation-

specific. The coded frame processing algorithm MAY be called when the input buffer

contains the complete media segment or it MAY be called multiple times as complete

coded frames are added to the input buffer.

3. If this SourceBuffer is full and cannot accept more media data, then set the

to true.

4. If the does not contain a complete media segment, then jump to the need more

data step below.

append state

input buffer

append state

input buffer append state

append state

input buffer

input buffer

append state

append state

first initialization segment received flag

input buffer

buffer full flag

input buffer

Media Source Extensions™ https://w3c.github.io/media-source/

40 of 74 27/01/2021, 07:45

5. Remove the media segment bytes from the beginning of the .

6. Set to WAITING_FOR_SEGMENT.

7. Jump to the loop top step above.

7. Need more data: Return control to the calling algorithm.

When the parser state needs to be reset, run the following steps:

1. If the equals PARSING_MEDIA_SEGMENT and the contains some

complete coded frames, then run the coded frame processing algorithm until all of these complete

coded frames have been processed.

2. Unset the on all track buffers.

3. Unset the on all track buffers.

4. Unset the on all track buffers.

5. Set the on all track buffers to true.

6. If the mode attribute equals "sequence", then set the to the

7. Remove all bytes from the .

8. Set to WAITING_FOR_SEGMENT.

This algorithm is called when an error occurs during an append.

1. Run the reset parser state algorithm.

2. Set the updating attribute to false.

3. Queue a task to fire a simple event named error at this SourceBuffer object.

4. Queue a task to fire a simple event named updateend at this SourceBuffer object.

input buffer

append state

3.5.2 Reset Parser State

append state input buffer

last decode timestamp

last frame duration

highest end timestamp

need random access point flag

group start timestamp group end

timestamp

input buffer

append state

3.5.3 Append Error Algorithm

Media Source Extensions™ https://w3c.github.io/media-source/

41 of 74 27/01/2021, 07:45

5. Run the end of stream algorithm with the parameter set to "decode".

When an append operation begins, the follow steps are run to validate and prepare the SourceBuffer.

1. If the SourceBuffer has been removed from the sourceBuffers attribute of the parent media

source then throw an InvalidStateError exception and abort these steps.

2. If the updating attribute equals true, then throw an InvalidStateError exception and abort

these steps.

3. If the HTMLMediaElement.error attribute is not null, then throw an InvalidStateError

exception and abort these steps.

4. If the readyState attribute of the parent media source is in the "ended" state then run the

following steps:

1. Set the readyState attribute of the parent media source to "open"

2. Queue a task to fire a simple event named sourceopen at the parent media source.

5. Run the coded frame eviction algorithm.

6. If the equals true, then throw a QuotaExceededError exception and abort these

step.

NOTE

This is the signal that the implementation was unable to evict enough data to accommodate

the append or the append is too big. The web application SHOULD use remove() to

explicitly free up space and/or reduce the size of the append.

When appendBuffer() is called, the following steps are run to process the appended data.

1. Run the segment parser loop algorithm.

2. If the segment parser loop algorithm in the previous step was aborted, then abort this algorithm.

error

3.5.4 Prepare Append Algorithm

buffer full flag

3.5.5 Buffer Append Algorithm

Media Source Extensions™ https://w3c.github.io/media-source/

42 of 74 27/01/2021, 07:45

3. Set the updating attribute to false.

4. Queue a task to fire a simple event named update at this SourceBuffer object.

5. Queue a task to fire a simple event named updateend at this SourceBuffer object.

Follow these steps when a caller needs to initiate a JavaScript visible range removal operation that

blocks other SourceBuffer updates:

1. Let equal the starting presentation timestamp for the removal range, in seconds measured

from presentation start time.

2. Let equal the end presentation timestamp for the removal range, in seconds measured from

presentation start time.

3. Set the updating attribute to true.

4. Queue a task to fire a simple event named updatestart at this SourceBuffer object.

5. Return control to the caller and run the rest of the steps asynchronously.

6. Run the coded frame removal algorithm with and as the start and end of the removal

range.

7. Set the updating attribute to false.

8. Queue a task to fire a simple event named update at this SourceBuffer object.

9. Queue a task to fire a simple event named updateend at this SourceBuffer object.

The following steps are run when the segment parser loop successfully parses a complete initialization

segment:

Each SourceBuffer object has an internal first initialization segment received flag that tracks whether

the first initialization segment has been appended and received by this algorithm. This flag is set to

false when the SourceBuffer is created and updated by the algorithm below.

1. Update the duration attribute if it currently equals NaN:

3.5.6 Range Removal

start

end

start end

3.5.7 Initialization Segment Received

Media Source Extensions™ https://w3c.github.io/media-source/

43 of 74 27/01/2021, 07:45

↪ If the initialization segment contains a duration:
Run the duration change algorithm with set to the duration in the

initialization segment.

↪ Otherwise:
Run the duration change algorithm with set to positive Infinity.

2. If the initialization segment has no audio, video, or text tracks, then run the append error

algorithm and abort these steps.

3. If the is true, then run the following steps:

1. Verify the following properties. If any of the checks fail then run the append error algorithm

and abort these steps.

The number of audio, video, and text tracks match what was in the first initialization

segment.

The codecs for each track, match what was specified in the first initialization segment.

If more than one track for a single type are present (e.g., 2 audio tracks), then the Track

IDs match the ones in the first initialization segment.

2. Add the appropriate track descriptions from this initialization segment to each of the track

buffers.

3. Set the on all track buffers to true.

4. Let equal false.

5. If the is false, then run the following steps:

1. If the initialization segment contains tracks with codecs the user agent does not support, then

run the append error algorithm and abort these steps.

NOTE

User agents MAY consider codecs, that would otherwise be supported, as "not supported"

here if the codecs were not specified in the parameter passed to

addSourceBuffer().

For example, MediaSource.isTypeSupported('video/webm;codecs="vp8,vorbis"') may

return true, but if addSourceBuffer() was called with 'video/webm;codecs="vp8"' and

a Vorbis track appears in the initialization segment, then the user agent MAY use this step

to trigger a decode error.

2. For each audio track in the initialization segment, run following steps:

new duration

new duration

first initialization segment received flag

need random access point flag

active track flag

first initialization segment received flag

type

Media Source Extensions™ https://w3c.github.io/media-source/

44 of 74 27/01/2021, 07:45

1. Let be the Track ID for the current track being processed.

2. Let be a BCP 47 language tag for the language specified in the

initialization segment for this track or an empty string if no language info is present.

3. If equals the 'und' BCP 47 value, then assign an empty string to

.

4. Let be a label specified in the initialization segment for this track or an

empty string if no label info is present.

5. Let be a sequence of kind strings specified in the initialization segment for

this track or a sequence with a single empty string element in it if no kind information

is provided.

6. For each value in , run the following steps:

1. Let equal the value from for this iteration of the

loop.

2. Let be a new AudioTrack object.

3. Generate a unique ID and assign it to the id property on .

4. Assign to the language property on .

5. Assign to the label property on .

6. Assign to the kind property on .

7. If audioTracks.length equals 0, then run the following steps:

1. Set the enabled property on to true.

2. Set to true.

8. Add to the audioTracks attribute on this SourceBuffer object.

NOTE

This should trigger AudioTrackList [HTML] logic to queue a task to fire a

trusted event named addtrack, that does not bubble and is not cancelable, and

that uses the TrackEvent interface, with the track attribute initialized to

, at the AudioTrackList object referenced by the audioTracks

attribute on this SourceBuffer object.

9. Add to the audioTracks attribute on the HTMLMediaElement.

audio byte stream track ID

audio language

audio language audio

language

audio label

audio kinds

audio kinds

current audio kind audio kinds

new audio track

new audio track

audio language new audio track

audio label new audio track

current audio kind new audio track

new audio track

active track flag

new audio track

new

audio track

new audio track

Media Source Extensions™ https://w3c.github.io/media-source/

45 of 74 27/01/2021, 07:45

NOTE

This should trigger AudioTrackList [HTML] logic to queue a task to fire a

trusted event named addtrack, that does not bubble and is not cancelable, and

that uses the TrackEvent interface, with the track attribute initialized to

, at the AudioTrackList object referenced by the audioTracks

attribute on the HTMLMediaElement.

7. Create a new track buffer to store coded frames for this track.

8. Add the track description for this track to the track buffer.

3. For each video track in the initialization segment, run following steps:

1. Let be the Track ID for the current track being processed.

2. Let be a BCP 47 language tag for the language specified in the

initialization segment for this track or an empty string if no language info is present.

3. If equals the 'und' BCP 47 value, then assign an empty string to

.

4. Let be a label specified in the initialization segment for this track or an

empty string if no label info is present.

5. Let be a sequence of kind strings specified in the initialization segment for

this track or a sequence with a single empty string element in it if no kind information

is provided.

6. For each value in , run the following steps:

1. Let equal the value from for this iteration of the

loop.

2. Let be a new VideoTrack object.

3. Generate a unique ID and assign it to the id property on .

4. Assign to the language property on .

5. Assign to the label property on .

6. Assign to the kind property on .

7. If videoTracks.length equals 0, then run the following steps:

1. Set the selected property on to true.

new

audio track

video byte stream track ID

video language

video language video

language

video label

video kinds

video kinds

current video kind video kinds

new video track

new video track

video language new video track

video label new video track

current video kind new video track

new video track

Media Source Extensions™ https://w3c.github.io/media-source/

46 of 74 27/01/2021, 07:45

2. Set to true.

8. Add to the videoTracks attribute on this SourceBuffer object.

NOTE

This should trigger VideoTrackList [HTML] logic to queue a task to fire a

trusted event named addtrack, that does not bubble and is not cancelable, and

that uses the TrackEvent interface, with the track attribute initialized to

, at the VideoTrackList object referenced by the videoTracks

attribute on this SourceBuffer object.

9. Add to the videoTracks attribute on the HTMLMediaElement.

NOTE

This should trigger VideoTrackList [HTML] logic to queue a task to fire a

trusted event named addtrack, that does not bubble and is not cancelable, and

that uses the TrackEvent interface, with the track attribute initialized to

, at the VideoTrackList object referenced by the videoTracks

attribute on the HTMLMediaElement.

7. Create a new track buffer to store coded frames for this track.

8. Add the track description for this track to the track buffer.

4. For each text track in the initialization segment, run following steps:

1. Let be the Track ID for the current track being processed.

2. Let be a BCP 47 language tag for the language specified in the

initialization segment for this track or an empty string if no language info is present.

3. If equals the 'und' BCP 47 value, then assign an empty string to

.

4. Let be a label specified in the initialization segment for this track or an empty

string if no label info is present.

5. Let be a sequence of kind strings specified in the initialization segment for

this track or a sequence with a single empty string element in it if no kind information

is provided.

active track flag

new video track

new

video track

new video track

new

video track

text byte stream track ID

text language

text language text

language

text label

text kinds

Media Source Extensions™ https://w3c.github.io/media-source/

47 of 74 27/01/2021, 07:45

6. For each value in , run the following steps:

1. Let equal the value from for this iteration of the loop.

2. Let be a new TextTrack object.

3. Generate a unique ID and assign it to the id property on .

4. Assign to the language property on .

5. Assign to the label property on .

6. Assign to the kind property on .

7. Populate the remaining properties on with the appropriate

information from the initialization segment.

8. If the mode property on equals "showing" or "hidden", then set

 to true.

9. Add to the textTracks attribute on this SourceBuffer object.

NOTE

This should trigger TextTrackList [HTML] logic to queue a task to fire a

trusted event named addtrack, that does not bubble and is not cancelable, and

that uses the TrackEvent interface, with the track attribute initialized to

, at the TextTrackList object referenced by the textTracks

attribute on this SourceBuffer object.

10. Add to the textTracks attribute on the HTMLMediaElement.

NOTE

This should trigger TextTrackList [HTML] logic to queue a task to fire a

trusted event named addtrack, that does not bubble and is not cancelable, and

that uses the TrackEvent interface, with the track attribute initialized to

, at the TextTrackList object referenced by the textTracks

attribute on the HTMLMediaElement.

7. Create a new track buffer to store coded frames for this track.

8. Add the track description for this track to the track buffer.

5. If equals true, then run the following steps:

1. Add this SourceBuffer to activeSourceBuffers.

text kinds

current text kind text kinds

new text track

new text track

text language new text track

text label new text track

current text kind new text track

new text track

new text track

active track flag

new text track

new

text track

new text track

new

text track

active track flag

Media Source Extensions™ https://w3c.github.io/media-source/

48 of 74 27/01/2021, 07:45

2. Queue a task to fire a simple event named addsourcebuffer at activeSourceBuffers

6. Set to true.

6. If the HTMLMediaElement.readyState attribute is HAVE_NOTHING, then run the following steps:

1. If one or more objects in sourceBuffers have set

to false, then abort these steps.

2. Set the HTMLMediaElement.readyState attribute to HAVE_METADATA.

NOTE

Per HTMLMediaElement ready states [HTML] logic,

HTMLMediaElement.readyState changes may trigger events on the

HTMLMediaElement. This particular transition should trigger HTMLMediaElement

logic to queue a task to fire a simple event named loadedmetadata at the media

element.

7. If the equals true and the HTMLMediaElement.readyState attribute is greater

than HAVE_CURRENT_DATA, then set the HTMLMediaElement.readyState attribute to

HAVE_METADATA.

NOTE

Per HTMLMediaElement ready states [HTML] logic, HTMLMediaElement.readyState

changes may trigger events on the HTMLMediaElement.

When complete coded frames have been parsed by the segment parser loop then the following steps

are run:

1. For each coded frame in the media segment run the following steps:

1. Loop Top:

↪ If equals true:

1. Let equal 0.

2. Let equal 0.

first initialization segment received flag

first initialization segment received flag

active track flag

3.5.8 Coded Frame Processing

generate timestamps flag

presentation timestamp

decode timestamp

Media Source Extensions™ https://w3c.github.io/media-source/

49 of 74 27/01/2021, 07:45

↪ Otherwise:

1. Let be a double precision floating point

representation of the coded frame's presentation timestamp in seconds.

NOTE

Special processing may be needed to determine the presentation and

decode timestamps for timed text frames since this information may not

be explicitly present in the underlying format or may be dependent on the

order of the frames. Some metadata text tracks, like MPEG2-TS PSI data,

may only have implied timestamps. Format specific rules for these

situations SHOULD be in the byte stream format specifications or in

separate extension specifications.

2. Let be a double precision floating point representation of

the coded frame's decode timestamp in seconds.

NOTE

Implementations don't have to internally store timestamps in a double

precision floating point representation. This representation is used here

because it is the represention for timestamps in the HTML spec. The

intention here is to make the behavior clear without adding unnecessary

complexity to the algorithm to deal with the fact that adding a

timestampOffset may cause a timestamp rollover in the underlying

timestamp representation used by the byte stream format.

Implementations can use any internal timestamp representation they wish,

but the addition of timestampOffset SHOULD behave in a similar manner

to what would happen if a double precision floating point representation

was used.

2. Let be a double precision floating point representation of the coded frame's

duration in seconds.

3. If mode equals "sequence" and is set, then run the following steps:

1. Set timestampOffset equal to - .

2. Set equal to .

3. Set the on all track buffers to true.

presentation timestamp

decode timestamp

frame duration

group start timestamp

group start timestamp presentation timestamp

group end timestamp group start timestamp

need random access point flag

Media Source Extensions™ https://w3c.github.io/media-source/

50 of 74 27/01/2021, 07:45

4. Unset .

4. If timestampOffset is not 0, then run the following steps:

1. Add timestampOffset to the .

2. Add timestampOffset to the .

5. Let equal the track buffer that the coded frame will be added to.

6. ↪ If for is set and is less than
:

OR

↪ If for is set and the difference between
 and is greater than 2 times :

1. ↪ If mode equals "segments":
Set to .

↪ If mode equals "sequence":
Set equal to the .

2. Unset the on all track buffers.

3. Unset the on all track buffers.

4. Unset the on all track buffers.

5. Set the on all track buffers to true.

6. Jump to the Loop Top step above to restart processing of the current coded

frame.

↪ Otherwise:
Continue.

7. Let equal the sum of and .

8. If is less than appendWindowStart, then set the

 to true, drop the coded frame, and jump to the top of the loop to start processing

the next coded frame.

group start timestamp

presentation timestamp

decode timestamp

track buffer

last decode timestamp track buffer decode timestamp last
decode timestamp

last decode timestamp track buffer decode
timestamp last decode timestamp last frame duration

group end timestamp presentation timestamp

group start timestamp group end timestamp

last decode timestamp

last frame duration

highest end timestamp

need random access point flag

frame end timestamp presentation timestamp frame duration

presentation timestamp need random access

point flag

Media Source Extensions™ https://w3c.github.io/media-source/

51 of 74 27/01/2021, 07:45

NOTE

Some implementations MAY choose to collect some of these coded frames with

 less than appendWindowStart and use them to generate a splice

at the first coded frame that has a presentation timestamp greater than or equal to

appendWindowStart even if that frame is not a random access point. Supporting this

requires multiple decoders or faster than real-time decoding so for now this behavior

will not be a normative requirement.

9. If is greater than appendWindowEnd, then set the

 to true, drop the coded frame, and jump to the top of the loop to start processing

the next coded frame.

NOTE

Some implementations MAY choose to collect coded frames with

less than appendWindowEnd and greater than appendWindowEnd

and use them to generate a splice across the portion of the collected coded frames within

the append window at time of collection, and the beginning portion of later processed

frames which only partially overlap the end of the collected coded frames. Supporting

this requires multiple decoders or faster than real-time decoding so for now this behavior

will not be a normative requirement. In conjunction with collecting coded frames that

span appendWindowStart, implementations MAY thus support gapless audio splicing.

10. If the on equals true, then run the following

steps:

1. If the coded frame is not a random access point, then drop the coded frame and jump to

the top of the loop to start processing the next coded frame.

2. Set the on to false.

11. Let be an unset variable for holding audio splice information

12. Let be an unset variable for holding timed text splice information

13. If for is unset and falls within the

presentation interval of a coded frame in , then run the following steps:

1. Let be the coded frame in that matches the condition

above.

2. ↪ If contains audio coded frames:

presentation timestamp

frame end timestamp need random access

point flag

presentation timestamp

frame end timestamp

need random access point flag track buffer

need random access point flag track buffer

spliced audio frame

spliced timed text frame

last decode timestamp track buffer presentation timestamp

track buffer

overlapped frame track buffer

track buffer

Media Source Extensions™ https://w3c.github.io/media-source/

52 of 74 27/01/2021, 07:45

Run the audio splice frame algorithm and if a splice frame is returned, assign

it to .

↪ If contains video coded frames:

1. Let equal the presentation

timestamp plus 1 microsecond.

2. If the is less than the ,

then remove from .

NOTE

This is to compensate for minor errors in frame timestamp

computations that can appear when converting back and forth

between double precision floating point numbers and rationals. This

tolerance allows a frame to replace an existing one as long as it is

within 1 microsecond of the existing frame's start time. Frames that

come slightly before an existing frame are handled by the removal

step below.

↪ If contains timed text coded frames:
Run the text splice frame algorithm and if a splice frame is returned, assign it

to .

14. Remove existing coded frames in :

↪ If for is not set:
Remove all coded frames from that have a presentation timestamp

greater than or equal to and less than .

↪ If for is set and less than or equal to
:

Remove all coded frames from that have a presentation timestamp

greater than or equal to and less than

15. Remove all possible decoding dependencies on the coded frames removed in the previous

two steps by removing all coded frames from between those frames removed in

the previous two steps and the next random access point after those removed frames.

spliced audio frame

track buffer

remove window timestamp overlapped frame

presentation timestamp remove window timestamp

overlapped frame track buffer

track buffer

spliced timed text frame

track buffer

highest end timestamp track buffer
track buffer

presentation timestamp frame end timestamp

highest end timestamp track buffer
presentation timestamp

track buffer

highest end timestamp frame end timestamp

track buffer

Media Source Extensions™ https://w3c.github.io/media-source/

53 of 74 27/01/2021, 07:45

NOTE

Removing all coded frames until the next random access point is a conservative estimate

of the decoding dependencies since it assumes all frames between the removed frames

and the next random access point depended on the frames that were removed.

16. ↪ If is set:
Add to the .

↪ If is set:
Add to the .

↪ Otherwise:
Add the coded frame with the , , and

 to the .

17. Set for to .

18. Set for to .

19. If for is unset or is greater than

, then set for to

.

NOTE

The greater than check is needed because bidirectional prediction between coded frames

can cause to not be monotonically increasing even though the

decode timestamps are monotonically increasing.

20. If is greater than , then set

equal to .

21. If equals true, then set timestampOffset equal to

.

2. If the HTMLMediaElement.readyState attribute is HAVE_METADATA and the new coded frames

cause HTMLMediaElement.buffered to have a TimeRange for the current playback position, then

set the HTMLMediaElement.readyState attribute to HAVE_CURRENT_DATA.

spliced audio frame
spliced audio frame track buffer

spliced timed text frame
spliced timed text frame track buffer

presentation timestamp decode timestamp

frame duration track buffer

last decode timestamp track buffer decode timestamp

last frame duration track buffer frame duration

highest end timestamp track buffer frame end timestamp

highest end timestamp highest end timestamp track buffer frame end

timestamp

presentation timestamp

frame end timestamp group end timestamp group end timestamp

frame end timestamp

generate timestamps flag frame end

timestamp

Media Source Extensions™ https://w3c.github.io/media-source/

54 of 74 27/01/2021, 07:45

NOTE

Per HTMLMediaElement ready states [HTML] logic, HTMLMediaElement.readyState

changes may trigger events on the HTMLMediaElement.

3. If the HTMLMediaElement.readyState attribute is HAVE_CURRENT_DATA and the new coded

frames cause HTMLMediaElement.buffered to have a TimeRange that includes the current

playback position and some time beyond the current playback position, then set the

HTMLMediaElement.readyState attribute to HAVE_FUTURE_DATA.

NOTE

Per HTMLMediaElement ready states [HTML] logic, HTMLMediaElement.readyState

changes may trigger events on the HTMLMediaElement.

4. If the HTMLMediaElement.readyState attribute is HAVE_FUTURE_DATA and the new coded frames

cause HTMLMediaElement.buffered to have a TimeRange that includes the current playback

position and enough data to ensure uninterrupted playback, then set the

HTMLMediaElement.readyState attribute to HAVE_ENOUGH_DATA.

NOTE

Per HTMLMediaElement ready states [HTML] logic, HTMLMediaElement.readyState

changes may trigger events on the HTMLMediaElement.

5. If the media segment contains data beyond the current duration, then run the duration change

algorithm with set to the maximum of the current duration and the

.

Follow these steps when coded frames for a specific time range need to be removed from the

SourceBuffer:

1. Let be the starting presentation timestamp for the removal range.

2. Let be the end presentation timestamp for the removal range.

3. For each track buffer in this source buffer, run the following steps:

new duration group end

timestamp

3.5.9 Coded Frame Removal Algorithm

start

end

Media Source Extensions™ https://w3c.github.io/media-source/

55 of 74 27/01/2021, 07:45

1. Let be the current value of duration

2. If this track buffer has a random access point timestamp that is greater than or equal to ,

then update to that random access point timestamp.

NOTE

Random access point timestamps can be different across tracks because the

dependencies between coded frames within a track are usually different than the

dependencies in another track.

3. Remove all media data, from this track buffer, that contain starting timestamps greater than

or equal to and less than the .

1. For each removed frame, if the frame has a decode timestamp equal to the

 for the frame's track, run the following steps:

↪ If mode equals "segments":
Set to presentation timestamp.

↪ If mode equals "sequence":
Set equal to the .

2. Unset the on all track buffers.

3. Unset the on all track buffers.

4. Unset the on all track buffers.

5. Set the on all track buffers to true.

4. Remove all possible decoding dependencies on the coded frames removed in the previous

step by removing all coded frames from this track buffer between those frames removed in

the previous step and the next random access point after those removed frames.

NOTE

Removing all coded frames until the next random access point is a conservative estimate

of the decoding dependencies since it assumes all frames between the removed frames

and the next random access point depended on the frames that were removed.

5. If this object is in activeSourceBuffers, the current playback position is greater than or

equal to and less than the , and HTMLMediaElement.readyState

is greater than HAVE_METADATA, then set the HTMLMediaElement.readyState attribute to

HAVE_METADATA and stall playback.

remove end timestamp

end

remove end timestamp

start remove end timestamp

last decode

timestamp

group end timestamp

group start timestamp group end timestamp

last decode timestamp

last frame duration

highest end timestamp

need random access point flag

start remove end timestamp

Media Source Extensions™ https://w3c.github.io/media-source/

56 of 74 27/01/2021, 07:45

NOTE

Per HTMLMediaElement ready states [HTML] logic,

HTMLMediaElement.readyState changes may trigger events on the

HTMLMediaElement.

NOTE

This transition occurs because media data for the current position has been removed.

Playback cannot progress until media for the current playback position is appended or

the selected/enabled tracks change.

4. If equals true and this object is ready to accept more bytes, then set the

 to false.

This algorithm is run to free up space in this source buffer when new data is appended.

1. Let equal the data that is about to be appended to this SourceBuffer.

2. If the equals false, then abort these steps.

3. Let equal a list of presentation time ranges that can be evicted from the

presentation to make room for the .

NOTE

Implementations MAY use different methods for selecting so web applications

SHOULD NOT depend on a specific behavior. The web application can use the buffered

attribute to observe whether portions of the buffered data have been evicted.

4. For each range in , run the coded frame removal algorithm with and

equal to the removal range start and end timestamp respectively.

Follow these steps when the coded frame processing algorithm needs to generate a splice frame for

two overlapping audio coded frames:

buffer full flag buffer full

flag

3.5.10 Coded Frame Eviction Algorithm

new data

buffer full flag

removal ranges

new data

removal ranges

removal ranges start end

3.5.11 Audio Splice Frame Algorithm

Media Source Extensions™ https://w3c.github.io/media-source/

57 of 74 27/01/2021, 07:45

1. Let be the track buffer that will contain the splice.

2. Let be the new coded frame, that is being added to , which triggered

the need for a splice.

3. Let be the presentation timestamp for

4. Let be the decode timestamp for .

5. Let be the coded frame duration of .

6. Let be the coded frame in with a presentation interval that contains

.

7. Update and to the nearest audio sample timestamp

based on sample rate of the audio in . If a timestamp is equidistant from both

audio sample timestamps, then use the higher timestamp (e.g., floor(x * sample_rate + 0.5)

/ sample_rate).

NOTE

For example, given the following values:

The presentation timestamp of equals 10.

The sample rate of equals 8000 Hz

 equals 10.01255

 equals 10.01255

 and are updated to 10.0125 since 10.01255 is

closer to 10 + 100/8000 (10.0125) than 10 + 101/8000 (10.012625)

8. If the user agent does not support crossfading then run the following steps:

1. Remove from .

2. Add a silence frame to with the following properties:

The presentation timestamp set to the presentation timestamp.

The decode timestamp set to the decode timestamp.

The coded frame duration set to difference between and the

presentation timestamp.

track buffer

new coded frame track buffer

presentation timestamp new coded frame

decode timestamp new coded frame

frame duration new coded frame

overlapped frame track buffer

presentation timestamp

presentation timestamp decode timestamp

overlapped frame

overlapped frame

overlapped frame

presentation timestamp

decode timestamp

presentation timestamp decode timestamp

overlapped frame track buffer

track buffer

overlapped frame

overlapped frame

presentation timestamp

overlapped frame

Media Source Extensions™ https://w3c.github.io/media-source/

58 of 74 27/01/2021, 07:45

NOTE

Some implementations MAY apply fades to/from silence to coded frames on either side

of the inserted silence to make the transition less jarring.

3. Return to caller without providing a splice frame.

NOTE

This is intended to allow to be added to the as if

 had not been in the to begin with.

9. Let equal the sum of and .

10. Let equal the sum of and the splice duration of 5

milliseconds.

11. Let equal as well as any additional frames in

 that have a presentation timestamp greater than and less than

.

12. Remove all the frames included in from .

13. Return a splice frame with the following properties:

The presentation timestamp set to the presentation timestamp.

The decode timestamp set to the decode timestamp.

The coded frame duration set to difference between and the

presentation timestamp.

The fade out coded frames equals .

The fade in coded frame equal .

NOTE

If the is less than 5 milliseconds in duration, then coded frames that are

appended after the will be needed to properly render the splice.

The splice timestamp equals .

new coded frame track buffer

overlapped frame track buffer

frame end timestamp presentation timestamp frame duration

splice end timestamp presentation timestamp

fade out coded frames overlapped frame track

buffer presentation timestamp splice

end timestamp

fade out coded frames track buffer

overlapped frame

overlapped frame

frame end timestamp overlapped

frame

fade-out coded frames

new coded frame

new coded frame

new coded frame

presentation timestamp

Media Source Extensions™ https://w3c.github.io/media-source/

59 of 74 27/01/2021, 07:45

NOTE

See the audio splice rendering algorithm for details on how this splice frame is rendered.

The following steps are run when a spliced frame, generated by the audio splice frame algorithm,

needs to be rendered by the media element:

1. Let be the coded frames that are faded out during the splice.

2. Let be the coded frames that are faded in during the splice.

3. Let be the presentation timestamp of the first coded frame in

.

4. Let be the sum of the presentation timestamp and the coded frame duration of the

last frame in .

5. Let be the presentation timestamp where the splice starts. This corresponds with

the presentation timestamp of the first frame in .

6. Let equal plus five milliseconds.

7. Let be the samples generated by decoding .

8. Trim so that it only contains samples between and

.

9. Let be the samples generated by decoding .

10. If and do not have a common sample rate and channel layout,

then convert and to a common sample rate and channel layout.

11. Let be a buffer to hold the output samples.

12. Apply a linear gain fade out with a starting gain of 1 and an ending gain of 0 to the samples

between and in .

13. Apply a linear gain fade in with a starting gain of 0 and an ending gain of 1 to the samples

between and in .

3.5.12 Audio Splice Rendering Algorithm

fade out coded frames

fade in coded frames

presentation timestamp fade out

coded frames

end timestamp

fade in coded frames

splice timestamp

fade in coded frames

splice end timestamp splice timestamp

fade out samples fade out coded frames

fade out samples presentation timestamp splice

end timestamp

fade in samples fade in coded frames

fade out samples fade in samples

fade out samples fade in samples

output samples

splice timestamp splice end timestamp fade out samples

splice timestamp splice end timestamp fade in samples

Media Source Extensions™ https://w3c.github.io/media-source/

60 of 74 27/01/2021, 07:45

14. Copy samples between to from into

.

15. For each sample between and , compute the sum of a

sample from and the corresponding sample in and store the

result in .

16. Copy samples between to from into

.

17. Render .

NOTE

Here is a graphical representation of this algorithm.

Follow these steps when the coded frame processing algorithm needs to generate a splice frame for

two overlapping timed text coded frames:

1. Let be the track buffer that will contain the splice.

2. Let be the new coded frame, that is being added to , which triggered

the need for a splice.

3. Let be the presentation timestamp for

4. Let be the decode timestamp for .

presentation timestamp splice timestamp fade out samples

output samples

splice timestamp splice end timestamp

fade out samples fade in samples

output samples

splice end timestamp end timestamp fade in samples output

samples

output samples

3.5.13 Text Splice Frame Algorithm

track buffer

new coded frame track buffer

presentation timestamp new coded frame

decode timestamp new coded frame

Media Source Extensions™ https://w3c.github.io/media-source/

61 of 74 27/01/2021, 07:45

5. Let be the coded frame duration of .

6. Let equal the sum of and .

7. Let be the coded frame in with a presentation interval that

contains .

8. Let be the presentation timestamp of the

.

9. Let equal as well as any additional frames in

 that have a presentation timestamp greater than and less than

.

10. Remove all the frames included in from .

11. Update the coded frame duration of the to -

.

12. Add to the .

13. Return to caller without providing a splice frame.

NOTE

This is intended to allow to be added to the as if it hadn't

overlapped any frames in to begin with.

SourceBufferList is a simple container object for SourceBuffer objects. It provides read-only array

access and fires events when the list is modified.

frame duration new coded frame

frame end timestamp presentation timestamp frame duration

first overlapped frame track buffer

presentation timestamp

overlapped presentation timestamp first overlapped

frame

overlapped frames first overlapped frame track

buffer presentation timestamp frame

end timestamp

overlapped frames track buffer

first overlapped frame presentation timestamp

overlapped presentation timestamp

first overlapped frame track buffer

new coded frame track buffer

track buffer

4. SourceBufferList Object

WebIDL

[Exposed=Window]

interface SourceBufferList : EventTarget {

 readonly attribute unsigned long length;

 attribute EventHandler onaddsourcebuffer;

 attribute EventHandler onremovesourcebuffer;

 getter SourceBuffer (unsigned long index);

Media Source Extensions™ https://w3c.github.io/media-source/

62 of 74 27/01/2021, 07:45

length of type unsigned long, readonly
Indicates the number of SourceBuffer objects in the list.

onaddsourcebuffer of type EventHandler
The event handler for the addsourcebuffer event.

onremovesourcebuffer of type EventHandler
The event handler for the removesourcebuffer event.

getter
Allows the SourceBuffer objects in the list to be accessed with an array operator (i.e., []).

Parameter Type Nullable Optional Description

index
unsigned

long
✘ ✘

Return type: SourceBuffer

When this method is invoked, the user agent must run the following steps:

1. If is greater than or equal to the length attribute then return undefined and abort these

steps.

2. Return the 'th SourceBuffer object in the list.

Event name Interface Dispatched when...

addsourcebuffer Event When a SourceBuffer is added to the list.

removesourcebuffer Event When a SourceBuffer is removed from the list.

};

4.1 Attributes

4.2 Methods

index

index

4.3 Event Summary

Media Source Extensions™ https://w3c.github.io/media-source/

63 of 74 27/01/2021, 07:45

This section specifies extensions to the URL[FILE-API] object definition.

createObjectURL, static
Creates URLs for MediaSource objects.

NOTE

This algorithm is intended to mirror the behavior of the createObjectURL()[FILE-API]

method, which does not auto-revoke the created URL. Web authors are encouraged to use

revokeObjectURL()[FILE-API] for any MediaSource object URL that is no longer needed for

attachment to a media element.

Parameter Type Nullable Optional Description

mediaSource MediaSource ✘ ✘

Return type: DOMString

When this method is invoked, the user agent must run the following steps:

1. Return a unique MediaSource object URL that can be used to dereference the

argument.

This section specifies what existing attributes on the HTMLMediaElement MUST return when a

MediaSource is attached to the element.

The HTMLMediaElement.seekable attribute returns a new static normalized TimeRanges object

5. URL Object Extensions

WebIDL

[Exposed=Window]

partial interface URL {

 static DOMString createObjectURL (MediaSource mediaSource);

};

5.1 Methods

mediaSource

6. HTMLMediaElement Extensions

Media Source Extensions™ https://w3c.github.io/media-source/

64 of 74 27/01/2021, 07:45

created based on the following steps:

↪ If duration equals NaN:
Return an empty TimeRanges object.

↪ If duration equals positive Infinity:

1. If is not empty:

1. Let be the union of and the

HTMLMediaElement.buffered attribute.

2. Return a single range with a start time equal to the earliest start time in

 and an end time equal to the highest end time in and abort

these steps.

2. If the HTMLMediaElement.buffered attribute returns an empty TimeRanges object,

then return an empty TimeRanges object and abort these steps.

3. Return a single range with a start time of 0 and an end time equal to the highest end

time reported by the HTMLMediaElement.buffered attribute.

↪ Otherwise:
Return a single range with a start time of 0 and an end time equal to duration.

The HTMLMediaElement.buffered attribute returns a static normalized TimeRanges object based on

the following steps.

1. Let equal an empty TimeRanges object.

2. If activeSourceBuffers.length does not equal 0 then run the following steps:

1. Let be the ranges returned by buffered for each SourceBuffer object in

activeSourceBuffers.

2. Let be the largest range end time in the .

3. Let equal a TimeRange object containing a single range from 0 to

.

4. For each SourceBuffer object in activeSourceBuffers run the following steps:

1. Let equal the ranges returned by the buffered attribute on the current

SourceBuffer.

2. If readyState is "ended", then set the end time on the last range in to

.

live seekable range

union ranges live seekable range

union

ranges union ranges

intersection ranges

active ranges

highest end time active ranges

intersection ranges highest

end time

source ranges

source ranges

highest end time

Media Source Extensions™ https://w3c.github.io/media-source/

65 of 74 27/01/2021, 07:45

3. Let equal the intersection between the and

the .

4. Replace the ranges in with the .

3. If the current value of this attribute has not been set by this algorithm or does

not contain the exact same range information as the current value of this attribute, then update the

current value of this attribute to .

4. Return the current value of this attribute.

This section specifies extensions to the [HTML] AudioTrack definition.

sourceBuffer of type SourceBuffer, readonly , nullable
Returns the SourceBuffer that created this track. Returns null if this track was not created by a

SourceBuffer or the SourceBuffer has been removed from the sourceBuffers attribute of its

parent media source.

This section specifies extensions to the [HTML] VideoTrack definition.

new intersection ranges intersection ranges

source ranges

intersection ranges new intersection ranges

intersection ranges

intersection ranges

7. AudioTrack Extensions

WebIDL

partial interface AudioTrack {

 readonly attribute SourceBuffer? sourceBuffer;

};

Attributes

8. VideoTrack Extensions

WebIDL

partial interface VideoTrack {

 readonly attribute SourceBuffer? sourceBuffer;

};

Media Source Extensions™ https://w3c.github.io/media-source/

66 of 74 27/01/2021, 07:45

sourceBuffer of type SourceBuffer, readonly , nullable
Returns the SourceBuffer that created this track. Returns null if this track was not created by a

SourceBuffer or the SourceBuffer has been removed from the sourceBuffers attribute of its

parent media source.

This section specifies extensions to the [HTML] TextTrack definition.

sourceBuffer of type SourceBuffer, readonly , nullable
Returns the SourceBuffer that created this track. Returns null if this track was not created by a

SourceBuffer or the SourceBuffer has been removed from the sourceBuffers attribute of its

parent media source.

The bytes provided through appendBuffer() for a SourceBuffer form a logical byte stream. The

format and semantics of these byte streams are defined in byte stream format specifications. The byte

stream format registry [MSE-REGISTRY] provides mappings between a MIME type that may be

passed to addSourceBuffer() or isTypeSupported() and the byte stream format expected by a

SourceBuffer created with that MIME type. Implementations are encouraged to register mappings

for byte stream formats they support to facilitate interoperability. The byte stream format registry

[MSE-REGISTRY] is the authoritative source for these mappings. If an implementation claims to

support a MIME type listed in the registry, its SourceBuffer implementation MUST conform to the

byte stream format specification listed in the registry entry.

Attributes

9. TextTrack Extensions

WebIDL

partial interface TextTrack {

 readonly attribute SourceBuffer? sourceBuffer;

};

Attributes

10. Byte Stream Formats

Media Source Extensions™ https://w3c.github.io/media-source/

67 of 74 27/01/2021, 07:45

NOTE

The byte stream format specifications in the registry are not intended to define new storage

formats. They simply outline the subset of existing storage format structures that implementations

of this specification will accept.

NOTE

Byte stream format parsing and validation is implemented in the segment parser loop algorithm.

This section provides general requirements for all byte stream format specifications:

A byte stream format specification MUST define initialization segments and media segments.

A byte stream format SHOULD provide references for sourcing AudioTrack, VideoTrack, and

TextTrack attribute values from data in initialization segments.

NOTE

If the byte stream format covers a format similar to one covered in the in-band tracks spec

[INBANDTRACKS], then it SHOULD try to use the same attribute mappings so that Media

Source Extensions playback and non-Media Source Extensions playback provide the same

track information.

It MUST be possible to identify segment boundaries and segment type (initialization or media) by

examining the byte stream alone.

The user agent MUST run the append error algorithm when any of the following conditions are

met:

1. The number and type of tracks are not consistent.

NOTE

For example, if the first initialization segment has 2 audio tracks and 1 video track, then

all initialization segments that follow it in the byte stream MUST describe 2 audio tracks

and 1 video track.

2. Track IDs are not the same across initialization segments, for segments describing multiple

tracks of a single type (e.g., 2 audio tracks).

3. Codecs changes across initialization segments.

Media Source Extensions™ https://w3c.github.io/media-source/

68 of 74 27/01/2021, 07:45

NOTE

For example, a byte stream that starts with an initialization segment that specifies a

single AAC track and later contains an initialization segment that specifies a single

AMR-WB track is not allowed. Support for multiple codecs is handled with multiple

SourceBuffer objects.

The user agent MUST support the following:

1. Track IDs changing across initialization segments if the segments describes only one track

of each type.

2. Video frame size changes. The user agent MUST support seamless playback.

NOTE

This will cause the <video> display region to change size if the web application does not

use CSS or HTML attributes (width/height) to constrain the element size.

3. Audio channel count changes. The user agent MAY support this seamlessly and could trigger

downmixing.

NOTE

This is a quality of implementation issue because changing the channel count may

require reinitializing the audio device, resamplers, and channel mixers which tends to be

audible.

The following rules apply to all media segments within a byte stream. A user agent MUST:

1. Map all timestamps to the same media timeline.

2. Support seamless playback of media segments having a timestamp gap smaller than the

audio frame size. User agents MUST NOT reflect these gaps in the buffered attribute.

NOTE

This is intended to simplify switching between audio streams where the frame

boundaries don't always line up across encodings (e.g., Vorbis).

The user agent MUST run the append error algorithm when any combination of an initialization

segment and any contiguous sequence of media segments satisfies the following conditions:

1. The number and type (audio, video, text, etc.) of all tracks in the media segments are not

Media Source Extensions™ https://w3c.github.io/media-source/

69 of 74 27/01/2021, 07:45

identified.

2. The decoding capabilities needed to decode each track (i.e., codec and codec parameters) are

not provided.

3. Encryption parameters necessary to decrypt the content (except the encryption key itself) are

not provided for all encrypted tracks.

4. All information necessary to decode and render the earliest random access point in the

sequence of media segments and all subsequence samples in the sequence (in presentation

time) are not provided. This includes in particular,

Information that determines the intrinsic width and height of the video (specifically,

this requires either the picture or pixel aspect ratio, together with the encoded

resolution).

Information necessary to convert the video decoder output to a format suitable for

display

5. Information necessary to compute the global presentation timestamp of every sample in the

sequence of media segments is not provided.

For example, if I1 is associated with M1, M2, M3 then the above MUST hold for all the

combinations I1+M1, I1+M2, I1+M1+M2, I1+M2+M3, etc.

Byte stream specifications MUST at a minimum define constraints which ensure that the above

requirements hold. Additional constraints MAY be defined, for example to simplify implementation.

As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and notes

in this specification are non-normative. Everything else in this specification is normative.

The key words MAY, MUST, MUST NOT, SHOULD, and SHOULD NOT in this document are to be

interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

Example use of the Media Source Extensions

<script>

11. Conformance

12. Examples

Media Source Extensions™ https://w3c.github.io/media-source/

70 of 74 27/01/2021, 07:45

 function onSourceOpen(videoTag, e) {

 var mediaSource = e.target;

 if (mediaSource.sourceBuffers.length > 0)

 return;

 var sourceBuffer = mediaSource.addSourceBuffer('video/webm; codecs="vorbis,vp8"');

 videoTag.addEventListener('seeking', onSeeking.bind(videoTag, mediaSource));

 videoTag.addEventListener('progress', onProgress.bind(videoTag, mediaSource));

 var initSegment = GetInitializationSegment();

 if (initSegment == null) {

 // Error fetching the initialization segment. Signal end of stream with an error.

 mediaSource.endOfStream("network");

 return;

 }

 // Append the initialization segment.

 var firstAppendHandler = function(e) {

 var sourceBuffer = e.target;

 sourceBuffer.removeEventListener('updateend', firstAppendHandler);

 // Append some initial media data.

 appendNextMediaSegment(mediaSource);

 };

 sourceBuffer.addEventListener('updateend', firstAppendHandler);

 sourceBuffer.appendBuffer(initSegment);

 }

 function appendNextMediaSegment(mediaSource) {

 if (mediaSource.readyState == "closed")

 return;

 // If we have run out of stream data, then signal end of stream.

 if (!HaveMoreMediaSegments()) {

 mediaSource.endOfStream();

 return;

 }

 // Make sure the previous append is not still pending.

 if (mediaSource.sourceBuffers[0].updating)

Media Source Extensions™ https://w3c.github.io/media-source/

71 of 74 27/01/2021, 07:45

 return;

 var mediaSegment = GetNextMediaSegment();

 if (!mediaSegment) {

 // Error fetching the next media segment.

 mediaSource.endOfStream("network");

 return;

 }

 // NOTE: If mediaSource.readyState == “ended”, this appendBuffer() call will

 // cause mediaSource.readyState to transition to "open". The web application

 // should be prepared to handle multiple “sourceopen” events.

 mediaSource.sourceBuffers[0].appendBuffer(mediaSegment);

 }

 function onSeeking(mediaSource, e) {

 var video = e.target;

 if (mediaSource.readyState == "open") {

 // Abort current segment append.

 mediaSource.sourceBuffers[0].abort();

 }

 // Notify the media segment loading code to start fetching data at the

 // new playback position.

 SeekToMediaSegmentAt(video.currentTime);

 // Append a media segment from the new playback position.

 appendNextMediaSegment(mediaSource);

 }

 function onProgress(mediaSource, e) {

 appendNextMediaSegment(mediaSource);

 }

</script>

<video id="v" autoplay> </video>

<script>

 var video = document.getElementById('v');

 var mediaSource = new MediaSource();

 mediaSource.addEventListener('sourceopen', onSourceOpen.bind(this, video));

Media Source Extensions™ https://w3c.github.io/media-source/

72 of 74 27/01/2021, 07:45

 video.src = window.URL.createObjectURL(mediaSource);

</script>

The editors would like to thank Alex Giladi, Bob Lund, Chris Poole, Cyril Concolato, David Dorwin,

David Singer, Duncan Rowden, Frank Galligan, Glenn Adams, Jer Noble, Joe Steele, John Simmons,

Kevin Streeter, Mark Vickers, Matt Ward, Matthew Gregan, Michael Thornburgh, Philip Jägenstedt,

Pierre Lemieux, Ralph Giles, Steven Robertson, and Tatsuya Igarashi for their contributions to this

specification.

This section is non-normative.

The video playback quality metrics described in previous revisions of this specification (e.g., sections

5 and 10 of the Candidate Recommendation) are now being developed as part of [MEDIA-

PLAYBACK-QUALITY]. Some implementations may have implemented the earlier draft

VideoPlaybackQuality object and the HTMLVideoElement extension method

getVideoPlaybackQuality() described in those previous revisions.

[dom]
DOM Standard. Anne van Kesteren. WHATWG. Living Standard. URL:

https://dom.spec.whatwg.org/

[FILE-API]
File API. Marijn Kruisselbrink; Arun Ranganathan. W3C. 11 September 2019. W3C Working

Draft. URL: https://www.w3.org/TR/FileAPI/

[HTML]
HTML Standard. Anne van Kesteren; Domenic Denicola; Ian Hickson; Philip Jägenstedt; Simon

Pieters. WHATWG. Living Standard. URL: https://html.spec.whatwg.org/multipage/

[MSE-REGISTRY]

13. Acknowledgments

A. VideoPlaybackQuality

B. References

B.1 Normative references

Media Source Extensions™ https://w3c.github.io/media-source/

73 of 74 27/01/2021, 07:45

Media Source Extensions™ Byte Stream Format Registry. Matthew Wolenetz; Jerry Smith;

Aaron Colwell. W3C. URL: https://w3c.github.io/mse-byte-stream-format-registry/

[RFC2119]
Key words for use in RFCs to Indicate Requirement Levels. S. Bradner. IETF. March 1997. Best

Current Practice. URL: https://tools.ietf.org/html/rfc2119

[RFC8174]
Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words. B. Leiba. IETF. May 2017. Best

Current Practice. URL: https://tools.ietf.org/html/rfc8174

[url]
URL Standard. Anne van Kesteren. WHATWG. Living Standard. URL:

https://url.spec.whatwg.org/

[WEBIDL]
Web IDL. Boris Zbarsky. W3C. 15 December 2016. W3C Editor's Draft. URL:

https://heycam.github.io/webidl/

[INBANDTRACKS]
Sourcing In-band Media Resource Tracks from Media Containers into HTML. Silvia Pfeiffer;

Bob Lund. W3C. 26 April 2015. Unofficial Draft. URL: https://dev.w3.org/html5/html-sourcing-

inband-tracks/

[MEDIA-PLAYBACK-QUALITY]
Media Playback Quality. Mounir Lamouri. W3C. W3C Editor's Draft. URL:

https://w3c.github.io/media-playback-quality/

↑

B.2 Informative references

Media Source Extensions™ https://w3c.github.io/media-source/

74 of 74 27/01/2021, 07:45

