
Media Capture and Streams

This version:
https://w3c.github.io/mediacapture-main/

Latest published version:
https://www.w3.org/TR/mediacapture-streams/

Latest editor's draft:
https://w3c.github.io/mediacapture-main/

Implementation report:
https://wpt.fyi/mediacapture-streams

Editors:
Cullen Jennings (Cisco)

Bernard Aboba (Microsoft Corporation)

Jan-Ivar Bruaroey (Mozilla)

Henrik Boström (Google)

Youenn Fablet (Apple)

Former editors:
Daniel C. Burnett (Invited Expert) - Until 01 June 2018

Adam Bergkvist (Ericsson) - Until 01 June 2018

Anant Narayanan (Mozilla) - Until 30 November 2012

Participate:
GitHub w3c/mediacapture-main

File a bug

Commit history

Pull requests

Participate:
Mailing list

Initial Author of this Specification was Ian Hickson, Google Inc., with the following copyright statement:

© Copyright 2004-2011 Apple Computer, Inc., Mozilla Foundation, and Opera Software ASA. You are granted a license to

use, reproduce and create derivative works of this document.

All subsequent changes since 26 July 2011 done by the W3C WebRTC Working Group (and previously the Device APIs

Working Group) are under the following Copyright:

© 2011-2020 W3C® (MIT, ERCIM, Keio, Beihang). W3C liability, trademark and permissive document license rules apply.

W3C Editor's Draft 21 January 2021

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

1 of 98 27/01/2021, 07:47

1.

2.

This document defines a set of JavaScript APIs that allow local media, including audio and video, to

be requested from a platform.

This section describes the status of this document at the time of its publication. Other documents may

supersede this document. A list of current W3C publications and the latest revision of this technical

report can be found in the W3C technical reports index at https://www.w3.org/TR/.

This document is not complete. It is subject to major changes and, while early experimentations are

encouraged, it is therefore not intended for implementation. The API is based on preliminary work

done in the WHATWG.

This document was published by the Web Real-Time Communications Working Group as an Editor's

Draft.

GitHub Issues are preferred for discussion of this specification. Alternatively, you can send comments

to our mailing list. Please send them to public-webrtc@w3.org (archives).

Publication as an Editor's Draft does not imply endorsement by the W3C Membership.

This is a draft document and may be updated, replaced or obsoleted by other documents at any time. It

is inappropriate to cite this document as other than work in progress.

This document was produced by a group operating under the W3C Patent Policy. W3C maintains a

public list of any patent disclosures made in connection with the deliverables of the group; that page

also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent

which the individual believes contains Essential Claim(s) must disclose the information in accordance

with section 6 of the W3C Patent Policy.

This document is governed by the 15 September 2020 W3C Process Document.

Introduction

Conformance

Abstract

Status of This Document

Table of Contents

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

2 of 98 27/01/2021, 07:47

3.

4.

4.1

4.2

4.3

4.3.1

4.3.2

4.3.3

4.3.4

4.3.5

4.3.6

4.3.7

4.3.8

4.4

5.

6.

7.

7.1

7.1.1

7.1.2

8.

9.

9.1

9.2

9.2.1

9.2.2

9.2.3

9.2.4

9.3

9.4

10.

10.1

Terminology

MediaStream API

Introduction

MediaStream

MediaStreamTrack

Life-cycle and Media Flow

Tracks and Constraints

Interface Definition

MediaTrackSupportedConstraints

MediaTrackCapabilities

MediaTrackConstraints

MediaTrackSettings

Constrainable Properties

MediaStreamTrackEvent

The model: sources, sinks, constraints, and settings

MediaStreams in Media Elements

Error Handling

OverconstrainedError Interface

Constructors

Attributes

Event summary

Enumerating Local Media Devices

Navigator Interface Extensions

MediaDevices

Access control model

Device information exposure

Set device information exposure

Exposure decision algorithm for devices other than camera and microphone

Device Info

Input-specific Device Info

Obtaining local multimedia content

Legacy Interface Extensions

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

3 of 98 27/01/2021, 07:47

10.2

10.3

10.4

10.5

10.6

11.

11.1

11.2

11.3

11.4

11.5

12.

13.

14.

15.

16.

16.1

16.2

16.3

A.

B.

B.1

B.2

MediaDevices Interface Extensions

MediaStreamConstraints

NavigatorUserMediaSuccessCallback

NavigatorUserMediaErrorCallback

Implementation Suggestions

Constrainable Pattern

Interface Definition

Types for Constrainable Properties

Capabilities

Settings

Constraints and ConstraintSet

Examples

Permissions Policy Integration

Privacy Indicator Requirements

Privacy and Security Considerations

Extensibility

Defining a new media type (beyond the existing Audio and Video types)

Defining a new constrainable property

Defining new consumers of MediaStreams and MediaStreamTracks

Acknowledgements

References

Normative references

Informative references

This section is non-normative.

This document defines APIs for requesting access to local multimedia devices, such as microphones

or video cameras.

This document also defines the MediaStream API, which provides the means to control where

1. Introduction

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

4 of 98 27/01/2021, 07:47

multimedia stream data is consumed, and provides some control over the devices that produce the

media. It also exposes information about devices able to capture and render media.

As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and notes

in this specification are non-normative. Everything else in this specification is normative.

The key words MAY, MUST, MUST NOT, NOT REQUIRED, and SHOULD in this document are to be

interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

This specification defines conformance criteria that apply to a single product: the User Agent that

implements the interfaces that it contains.

Conformance requirements phrased as algorithms or specific steps may be implemented in any

manner, so long as the end result is equivalent. (In particular, the algorithms defined in this

specification are intended to be easy to follow, and not intended to be performant.)

Implementations that use ECMAScript [ECMA-262] to implement the APIs defined in this

specification must implement them in a manner consistent with the ECMAScript Bindings defined in

the Web IDL specification [WEBIDL], as this specification uses that specification and terminology.

HTML Terms:
The EventHandler interface represents a callback used for event handlers as defined in [HTML].

The concept queue a task is defined in [HTML] and fire an event is defined in [DOM].

The terms event handlers and responsible document are defined in [HTML].

The term relevant settings object is defined in [HTML].

The term allowed to use is defined in [HTML].

The terms fulfilled, rejected and resolved used in the context of Promises are defined in

[ECMA-262].

DOM
The terms Event, EventInit and EventTarget are defined in the [DOM] specification.

2. Conformance

3. Terminology

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

5 of 98 27/01/2021, 07:47

DOMException

The term DOMException is defined in [WEBIDL]

source
A source is the "thing" providing the source of a media stream track. The source is the

broadcaster of the media itself. A source can be a physical webcam, microphone, local video or

audio file from the user's hard drive, network resource, or static image. Note that this document

describes the use of microphone and camera type sources only, the use of other source types is

described in other documents.

An application that has no prior authorization regarding sources is only given the number of

available sources, their type and any relationship to other devices. Additional information about

sources can become available when applications are authorized to use a source (see § 9.2.1

Access control model).

Sources do not have constraints — tracks have constraints. When a source is connected to a

track, it must produce media that conforms to the constraints present on that track, to that track.

Multiple tracks can be attached to the same source. User Agent processing, such as

downsampling, MAY be used to ensure that all tracks have appropriate media.

Sources have constrainable properties which have capabilities and settings exposed on tracks.

While the constrainable properties are "owned" by the source, sources MAY be able to

accomodate different demands at once. For this reason, capabilities are common to any (multiple)

tracks that happen to be using the same source, whereas settings MAY differ per track (e.g., if two

different track objects bound to the same source query capability and settings information, they

will get back the same capabilities, but may get different settings that are tailored to satisfy their

individual constraints).

Setting (Source Setting)
A setting refers to the immediate, current value of the source's constrainable properties. Settings

are always read-only.

A source conditions may dynamically change, such as when a camera switches to a lower frame

rate due to low light conditions. In these cases the tracks related to the affected source might not

satisfy the set constraints any longer. The platform SHOULD try to minimize such excursions as

far as possible, but will continue to deliver media even when a temporary or permanent condition

exists that prevents satisfying the constraints.

Although settings are a property of the source, they are only exposed to the application through

the tracks attached to the source. This is exposed via the ConstrainablePattern interface.

Capability
For each constrainable property, there is a capability that describes whether it is supported by the

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

6 of 98 27/01/2021, 07:47

source and if so, the range of supported values. As with settings, capabilities are exposed to the

application via the ConstrainablePattern interface.

The values of the supported capabilities must be normalized to the ranges and enumerated types

defined in this specification.

A getCapabilities() call on a track returns the same underlying per-source capabilities for all

tracks connected to the source.

Source capabilities are effectively constant. Applications should be able to depend on a specific

source having the same capabilities for any browsing session.

This API is intentionally simplified. Capabilities are not capable of describing interactions

between different values. For instance, it is not possible to accurately describe the capabilities of

a camera that can produce a high resolution video stream at a low frame rate and lower

resolutions at a higher frame rate. Capabilities describe the complete range of each value.

Interactions between constraints are exposed by attempting to apply constraints.

Constraints
Constraints provide a general control surface that allows applications to both select an

appropriate source for a track and, once selected, to influence how a source operates.

Constraints limit the range of operating modes that a source can use when providing media for a

track. Without provided track constraints, implementations are free to select a source's settings

from the full ranges of its supported capabilities. Implementations may also adjust source settings

at any time within the bounds imposed by all applied constraints.

getUserMedia() uses constraints to help select an appropriate source for a track and configure it.

Additionally, the ConstrainablePattern interface on tracks includes an API for dynamically

changing the track's constraints at any later time.

A track will not be connected to a source using getUserMedia() if its initial constraints cannot

be satisfied. However, the ability to meet the constraints on a track can change over time, and

constraints can be changed. If circumstances change such that constraints cannot be met, the

ConstrainablePattern interface defines an appropriate error to inform the application. § 5. The

model: sources, sinks, constraints, and settings explains how constraints interact in more detail.

For each constrainable property, a constraint exists whose name corresponds with the relevant

source setting name and capability name.

A constraint falls into one of three groups, depending on its place in the constraints structure. The

groups are:

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

7 of 98 27/01/2021, 07:47

required constraints are all non-advanced constraints that are required.

optional basic constraints are the remaining non-advanced constraints.

advanced constraints are all constraints specified using the advanced keyword.

In general, User Agents will have more flexibility to optimize the media streaming experience the

fewer constraints are applied, so application authors are strongly encouraged to use required

constraints sparingly.

Permissions
The terms reading current permission state and request permission to use are defined in

[permissions].

The two main components in the MediaStream API are the MediaStreamTrack and MediaStream

interfaces. The MediaStreamTrack object represents media of a single type that originates from one

media source in the User Agent, e.g. video produced by a web camera. A MediaStream is used to

group several MediaStreamTrack objects into one unit that can be recorded or rendered in a media

element.

Each MediaStream can contain zero or more MediaStreamTrack objects. All tracks in a MediaStream

are intended to be synchronized when rendered. This is not a hard requirement, since it might not be

possible to synchronize tracks from sources that have different clocks. Different MediaStream objects

do not need to be synchronized.

NOTE

While the intent is to synchronize tracks, it could be better in some

circumstances to permit tracks to lose synchronization. In particular, when

tracks are remotely sourced and real-time [WEBRTC], it can be better to

allow loss of synchronization than to accumulate delays or risk glitches and

other artifacts. Implementations are expected to understand the implications

of choices regarding synchronization of playback and the effect that these

have on user perception.

A single MediaStreamTrack can represent multi-channel content, such as stereo or 5.1 audio or

4. MediaStream API

4.1 Introduction

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

8 of 98 27/01/2021, 07:47

stereoscopic video, where the channels have a well defined relationship to each other. Information

about channels might be exposed through other APIs, such as [WEBAUDIO], but this specification

provides no direct access to channels.

A MediaStream object has an input and an output that represent the combined input and output of all

the object's tracks. The output of the MediaStream controls how the object is rendered, e.g., what is

saved if the object is recorded to a file or what is displayed if the object is used in a video element. A

single MediaStream object can be attached to multiple different outputs at the same time.

A new MediaStream object can be created from existing media streams or tracks using the

MediaStream() constructor. The constructor argument can either be an existing MediaStream object,

in which case all the tracks of the given stream are added to the new MediaStream object, or an array

of MediaStreamTrack objects. The latter form makes it possible to compose a stream from different

source streams.

Both MediaStream and MediaStreamTrack objects can be cloned. A cloned MediaStream contains

clones of all member tracks from the original stream. A cloned MediaStreamTrack has a set of

constraints that is independent of the instance it is cloned from, which allows media from the same

source to have different constraints applied for different consumers. The MediaStream object is also

used in contexts outside getUserMedia, such as [WEBRTC].

The MediaStream constructor composes a new stream out of existing tracks. It takes an optional

argument of type MediaStream or an array of MediaStreamTrack objects. When the constructor is

invoked, the User Agent must run the following steps:

1. Let be a newly constructed MediaStream object.

2. Initialize .id attribute to a newly generated value.

3. If the constructor's argument is present, run the following steps:

1. Construct a set of tracks based on the type of argument:

A MediaStream object:

Let be a set containing all the MediaStreamTrack objects in the MediaStream

track set.

A sequence of MediaStreamTrack objects:

4.2 MediaStream

stream

stream

tracks

tracks

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

9 of 98 27/01/2021, 07:47

Let be a set containing all the MediaStreamTrack objects in the provided

sequence.

2. For each MediaStreamTrack, , in , run the following steps:

1. If is already in 's track set, skip .

2. Otherwise, add to 's track set.

4. Return .

The tracks of a MediaStream are stored in a track set. The track set MUST contain the

MediaStreamTrack objects that correspond to the tracks of the stream. The relative order of the tracks

in the set is User Agent defined and the API will never put any requirements on the order. The proper

way to find a specific MediaStreamTrack object in the set is to look it up by its id.

An object that reads data from the output of a MediaStream is referred to as a MediaStream

consumer. The list of MediaStream consumers currently include media elements (such as video and

audio) [HTML], Web Real-Time Communications (WebRTC; RTCPeerConnection) [WEBRTC],

media recording (MediaRecorder) [mediastream-recording], image capture (ImageCapture) [image-

capture], and web audio (MediaStreamAudioSourceNode) [WEBAUDIO].

NOTE

MediaStream consumers must be able to handle tracks being added and

removed. This behavior is specified per consumer.

A MediaStream object is said to be active when it has at least one MediaStreamTrack that has not

ended. A MediaStream that does not have any tracks or only has tracks that are ended is inactive.

A MediaStream object is said to be audible when it has at least one MediaStreamTrack whose kind

is "audio" that has not ended. A MediaStream that does not have any audio tracks or only has audio

tracks that are ended is inaudible.

The User Agent may update a MediaStream's track set in response to, for example, an external event.

This specification does not specify any such cases, but other specifications using the MediaStream

API may. One such example is the WebRTC 1.0 [WEBRTC] specification where the track set of a

MediaStream, received from another peer, can be updated as a result of changes to the media session.

To add a track to a MediaStream , the User Agent MUST run the following steps:

1. If is already in track set, then abort these steps.

tracks

track tracks

track stream track

track stream

stream

track stream

track stream's

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

10 of 98 27/01/2021, 07:47

2. Add to 's track set.

3. Fire a track event named addtrack with at .

To remove a track from a MediaStream , the User Agent MUST run the following steps:

1. If is not in track set, then abort these steps.

2. Remove from 's track set.

3. Fire a track event named removetrack with at .

MediaStream

See the MediaStream constructor algorithm

No parameters.

MediaStream

See the MediaStream constructor algorithm

MediaStream

track stream

track stream

track stream

track stream's

track stream

track stream

WebIDL

[Exposed=Window]

interface MediaStream : EventTarget {

constructor();

constructor(MediaStream stream);

constructor(sequence<MediaStreamTrack> tracks);

 readonly attribute DOMString id;

sequence<MediaStreamTrack> getAudioTracks();

sequence<MediaStreamTrack> getVideoTracks();

sequence<MediaStreamTrack> getTracks();

MediaStreamTrack? getTrackById(DOMString trackId);

undefined addTrack(MediaStreamTrack track);

undefined removeTrack(MediaStreamTrack track);

MediaStream clone();

 readonly attribute boolean active;

 attribute EventHandler onaddtrack;

 attribute EventHandler onremovetrack;

};

Constructors

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

11 of 98 27/01/2021, 07:47

See the MediaStream constructor algorithm

id of type DOMString, readonly
When a MediaStream is created, the User Agent MUST generate an identifier string, and MUST

initialize the object's id attribute to that string, unless the object is created as part of a special

purpose algorithm that specifies how the stream id must be initialized. A good practice is to use a

UUID [rfc4122], which is 36 characters long in its canonical form. To avoid fingerprinting,

implementations SHOULD use the forms in section 4.4 or 4.5 of RFC 4122 when generating

UUIDs.

The id attribute MUST return the value to which it was initialized when the object was created.

active of type boolean, readonly
The active attribute MUST return true if this MediaStream is active and false otherwise.

onaddtrack of type EventHandler
The event type of this event handler is addtrack.

onremovetrack of type EventHandler
The event type of this event handler is removetrack.

getAudioTracks
Returns a sequence of MediaStreamTrack objects representing the audio tracks in this stream.

The getAudioTracks method MUST return a sequence that represents a snapshot of all the

MediaStreamTrack objects in this stream's track set whose kind is equal to "audio". The

conversion from the track set to the sequence is User Agent defined and the order does not have

to be stable between calls.

getVideoTracks
Returns a sequence of MediaStreamTrack objects representing the video tracks in this stream.

The getVideoTracks method MUST return a sequence that represents a snapshot of all the

MediaStreamTrack objects in this stream's track set whose kind is equal to "video". The

conversion from the track set to the sequence is User Agent defined and the order does not have

to be stable between calls.

Attributes

Methods

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

12 of 98 27/01/2021, 07:47

getTracks
Returns a sequence of MediaStreamTrack objects representing all the tracks in this stream.

The getTracks method MUST return a sequence that represents a snapshot of all the

MediaStreamTrack objects in this stream's track set, regardless of kind. The conversion from the

track set to the sequence is User Agent defined and the order does not have to be stable between

calls.

getTrackById
The getTrackById method MUST return either a MediaStreamTrack object from this stream's

track set whose id is equal to , or null, if no such track exists.

addTrack
Adds the given MediaStreamTrack to this MediaStream.

When the addTrack method is invoked, the User Agent MUST run the following steps:

1. Let be the methods argument and the MediaStream object on which the method

was called.

2. If is already in 's track set, then abort these steps.

3. Add to 's track set.

removeTrack
Removes the given MediaStreamTrack object from this MediaStream.

When the removeTrack method is invoked, the User Agent MUST run the following steps:

1. Let be the methods argument and the MediaStream object on which the method

was called.

2. If is not in track set, then abort these steps.

3. Remove from 's track set.

clone
Clones the given MediaStream and all its tracks.

When the clone() method is invoked, the User Agent MUST run the following steps:

1. Let be a newly constructed MediaStream object.

2. Initialize .MediaStream.id to a newly generated value.

trackId

track stream

track stream

track stream

track stream

track stream's

track stream

streamClone

streamClone

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

13 of 98 27/01/2021, 07:47

3. Clone each track in this MediaStream object and add the result to 's track set.

4. Return .

A MediaStreamTrack object represents a media source in the User Agent. An example source is a

device connected to the User Agent. Other specifications may define sources for MediaStreamTrack

that override the behavior specified here. Several MediaStreamTrack objects can represent the same

media source, e.g., when the user chooses the same camera in the UI shown by two consecutive calls

to getUserMedia().

The data from a MediaStreamTrack object does not necessarily have a canonical binary form; for

example, it could just be "the video currently coming from the user's video camera". This allows User

Agents to manipulate media in whatever fashion is most suitable on the user's platform.

A script can indicate that a MediaStreamTrack object no longer needs its source with the stop()

method. When all tracks using a source have been stopped or ended by some other means, the source

is stopped. If the source is a device exposed by getUserMedia(), then when the source is stopped, the

UA MUST run the following steps:

1. Let be the device's deviceId.

2. Set [[devicesLiveMap]][] to false.

3. If the result of reading the current permission state of the permission associated with the device's

kind and , is not "granted", then set [[devicesAccessibleMap]][] to false.

An implementation may use a per-source reference count to keep track of source usage, but the

specifics are out of scope for this specification.

To clone a track the User Agent MUST run the following steps:

1. Let be the MediaStreamTrack object to be cloned.

2. Let be a newly constructed MediaStreamTrack object.

3. Initialize .id to a newly generated value.

4. Initialize 's kind, label, readyState, and enabled attributes by copying the

corresponding values from .

streamClone

streamClone

4.3 MediaStreamTrack

deviceId

deviceId

deviceId deviceId

track

trackClone

trackClone

trackClone

track

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

14 of 98 27/01/2021, 07:47

5. Let 's underlying source be the source of .

6. Set 's constraints to the active constrains of .

7. Return .

A MediaStreamTrack has two states in its life-cycle: live and ended. A newly created

MediaStreamTrack can be in either state depending on how it was created. For example, cloning an

ended track results in a new ended track. The current state is reflected by the object's readyState

attribute.

In the live state, the track is active and media is available for use by consumers (but may be replaced

by zero-information-content if the MediaStreamTrack is muted or disabled, see below).

A muted or disabled MediaStreamTrack renders either silence (audio), black frames (video), or a

zero-information-content equivalent. For example, a video element sourced by a muted or disabled

MediaStreamTrack (contained within a MediaStream), is playing but the rendered content is the

muted output.

If the source is a device exposed by getUserMedia(), then when a track becomes either muted or

disabled, and this brings all tracks connected to the device to be either muted, disabled, or stopped,

then the UA MAY, using the device's deviceId, , set [[devicesLiveMap]][] to false,

provided the UA sets it back to true as soon as any unstopped track connected to this device becomes

un-muted or enabled again.

When a "live", unmuted, and enabled track sourced by a device exposed by getUserMedia()

becomes either [= track/muted or disabled, and this brings all tracks connected to the device

(regardless of browsing context) to be either muted, disabled, or stopped, then the UA SHOULD

relinquish the device within 3 seconds while allowing time for a reasonably-observant user to become

aware of the transition. The UA SHOULD attempt to reacquire the device as soon as any live track

sourced by the device becomes both unmuted and enabled again, provided that track's relevant settings

object's responsible document has focus at that time. If the document does not have focus at that time,

the UA SHOULD instead queue a task to mute the track, and not queue a task to unmute it until the

document regains focus. If reacquiring the device fails, the UA MUST end the track (The UA MAY

end it earlier should it detect a device problem, like the device being physically removed).

trackClone track

trackClone track

trackClone

4.3.1 Life-cycle and Media Flow

Life-cycle

deviceId deviceId

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

15 of 98 27/01/2021, 07:47

NOTE

The intent is to give users the assurance of privacy that having physical

camera (and microphone) hardware lights off brings, by aligning physical

and logical “privacy indicators”, at least while the current document is the

sole user of a device.

While other applications and documents using the device simultaneously

may interfere with this intent at times, they do not interfere with the rules laid

forth.

The muted/unmuted state of a track reflects whether the source provides any media at this moment.

The enabled/disabled state is under application control and determines whether the track outputs

media (to its consumers). Hence, media from the source only flows when a MediaStreamTrack object

is both unmuted and enabled.

A MediaStreamTrack is muted when the source is temporarily unable to provide the track with data.

A track can be muted by a user. Often this action is outside the control of the application. This could

be as a result of the user hitting a hardware switch or toggling a control in the operating system / User

Agent chrome. A track can also be muted by the User Agent.

Applications are able to enable or disable a MediaStreamTrack to prevent it from rendering media

from the source. A muted track will however, regardless of the enabled state, render silence and

blackness. A disabled track is logically equivalent to a muted track, from a consumer point of view.

For a newly created MediaStreamTrack object, the following applies. The track is always enabled

unless stated otherwise (for example when cloned) and the muted state reflects the state of the source

at the time the track is created.

A MediaStreamTrack object is said to end when the source of the track is disconnected or exhausted.

If all MediaStreamTracks that are using the same source are ended, the source will be stopped.

When a MediaStreamTrack object ends for any reason (e.g., because the user rescinds the permission

for the page to use the local camera, or because the application invoked the stop() method on the

MediaStreamTrack object, or because the User Agent has instructed the track to end for any reason) it

is said to be ended.

When a MediaStreamTrack ends for any reason other than the stop() method being

invoked, the User Agent MUST queue a task that runs the following steps:

1. If .readyState has the value "ended" already, then abort these steps.

track

track

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

16 of 98 27/01/2021, 07:47

2. Set .readyState to "ended".

3. Notify 's source that is ended so that the source may be stopped, unless other

MediaStreamTrack objects depend on it.

4. Fire an event named ended at the object.

If the end of the track was reached due to a user request, the event source for this event is the user

interaction event source.

To invoke the device permission revocation algorithm with PermissionName and

deviceId , run the following steps:

1. Let be the set of all currently "live" MediaStreamTracks that fit the following criteria:

If is not undefined, tracks whose associated deviceId matches

If is undefined, tracks whose permission associated with this kind of track (e.g.

"camera", "microphone") matches

2. For each in , end the track.

There are two dimensions related to the media flow for a "live" MediaStreamTrack : muted / not

muted, and enabled / disabled.

Muted refers to the input to the MediaStreamTrack. If live samples are not made available to the

MediaStreamTrack it is muted.

Muted is out of control for the application, but can be observed by the application by reading the

muted attribute and listening to the associated events mute and unmute. There can be several reasons

for a MediaStreamTrack to be muted: the user pushing a physical mute button on the microphone, the

user closing a laptop lid with an embedded camera, the user toggling a control in the operating system,

the user clicking a mute button in the User Agent chrome, the User Agent (on behalf of the user)

mutes, etc.

Whenever the User Agent initiates such a change, it MUST queue a task, using the user interaction

task source, to set a track's muted state to the state desired by the user.

task, using the user interaction task source, to set a track's muted state to the state desired by the user.

To set a track's muted state to , the User Agent MUST run the following steps:

track

track track

permissionName

deviceId

tracks

deviceId deviceId

deviceId

permissionName

track tracks

Media Flow

newState

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

17 of 98 27/01/2021, 07:47

1. Let be the MediaStreamTrack in question.

2. If .muted is already , then abort these steps.

3. Set .muted to .

4. If is true let be mute, otherwise unmute.

5. Fire an event named on .

Enabled/disabled on the other hand is available to the application to control (and observe) via the

enabled attribute.

The result for the consumer is the same in the sense that whenever MediaStreamTrack is muted or

disabled (or both) the consumer gets zero-information-content, which means silence for audio and

black frames for video. In other words, media from the source only flows when a MediaStreamTrack

object is both unmuted and enabled. For example, a video element sourced by a muted or disabled

MediaStreamTrack (contained in a MediaStream), is playing but rendering blackness.

For a newly created MediaStreamTrack object, the following applies: the track is always enabled

unless stated otherwise (for example when cloned) and the muted state reflects the state of the source

at the time the track is created.

MediaStreamTrack is a constrainable object as defined in the Constrainable Pattern section.

Constraints are set on tracks and may affect sources.

Whether Constraints were provided at track initialization time or need to be established later at

runtime, the APIs defined in the ConstrainablePattern Interface allow the retrieval and

manipulation of the constraints currently established on a track.

Once ended, a track will continue exposing a list of inherent constrainable track properties. This

list contains deviceId, facingMode and groupId.

track

track newState

track newState

newState eventName

eventName track

4.3.2 Tracks and Constraints

4.3.3 Interface Definition

WebIDL

[Exposed=Window]

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

18 of 98 27/01/2021, 07:47

kind of type DOMString, readonly
The kind attribute MUST return the string "audio" if this object represents an audio track or

"video" if this object represents a video track.

id of type DOMString, readonly
When a MediaStreamTrack is created, the User Agent MUST generate an identifier string, and

MUST initialize the object's id attribute to that string, unless the object is created as part of a

special purpose algorithm that specifies how the stream id must be initialized. See

MediaStream.id attribute for guidelines on how to generate such an identifier.

An example of an algorithm that specifies how the track id must be initialized is the algorithm to

represent an incoming network component with a MediaStreamTrack object. [WEBRTC]

id attribute MUST return the value to which it was initialized when the object was created.

label of type DOMString, readonly
User Agents MAY label audio and video sources (e.g., "Internal microphone" or "External USB

Webcam"). The label attribute MUST return the label of the object's corresponding source, if

any. If the corresponding source has or had no label, the attribute MUST instead return the empty

string.

interface MediaStreamTrack : EventTarget {

 readonly attribute DOMString kind;

 readonly attribute DOMString id;

 readonly attribute DOMString label;

 attribute boolean enabled;

 readonly attribute boolean muted;

 attribute EventHandler onmute;

 attribute EventHandler onunmute;

 readonly attribute MediaStreamTrackState readyState;

 attribute EventHandler onended;

MediaStreamTrack clone();

undefined stop();

MediaTrackCapabilities getCapabilities();

MediaTrackConstraints getConstraints();

MediaTrackSettings getSettings();

Promise<undefined> applyConstraints(optional MediaTrackConstraints

constraints = {});

};

Attributes

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

19 of 98 27/01/2021, 07:47

enabled of type boolean
The enabled attribute controls the enabled state for the object.

On getting, the attribute MUST return the value to which it was last set. On setting, it MUST be

set to the new value.

NOTE

Thus, after a MediaStreamTrack has ended, its enabled attribute still

changes value when set; it just doesn't do anything with that new value.

muted of type boolean, readonly
The muted attribute MUST return true if the track is muted, and false otherwise.

onmute of type EventHandler
The event type of this event handler is mute.

onunmute of type EventHandler
The event type of this event handler is unmute.

readyState of type MediaStreamTrackState, readonly
The readyState attribute represents the state of the track. It MUST return the value as most

recently set by the User Agent.

onended of type EventHandler
The event type of this event handler is ended.

clone
Clones this MediaStreamTrack.

When the clone() method is invoked, the User Agent MUST return the result of cloning this

track.

stop

When a MediaStreamTrack object's stop() method is invoked, the User Agent MUST run

following steps:

1. Let be the current MediaStreamTrack object.

2. If .readyState is "ended", then abort these steps.

Methods

track

track

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

20 of 98 27/01/2021, 07:47

3. Notify 's source that is ended.

A source that is notified of a track ending will be stopped, unless other MediaStreamTrack

objects depend on it.

4. Set .readyState to "ended".

getCapabilities
Returns the capabilites of the source that this MediaStreamTrack, the constrainable object,

represents.

See ConstrainablePattern Interface for the definition of this method.

Since this method gives likely persistent, cross-origin information about the underlying device, it

adds to the fingerprint surface of the device.

getConstraints
See ConstrainablePattern Interface for the definition of this method.

getSettings
When a MediaStreamTrack object's MediaStreamTrack.getSettings() method is invoked, the

User Agent MUST run following steps:

1. Let be the current MediaStreamTrack object.

2. If .MediaStreamTrack.readyState is "ended", run the following sub steps:

1. Let be a new MediaTrackSettings dictionary.

2. For each of the list of inherent constrainable track properties, add a

corresponding property to if had such property at the time it was ended,

with the value at the time was ended.

3. Return .

3. Return the current settings of the track as defined in ConstrainablePattern Interface.

applyConstraints
When a MediaStreamTrack object's applyConstraints() method is invoked, the User Agent

MUST run following steps:

1. Let be the current MediaStreamTrack object.

2. If .readyState is "ended", run the following sub steps:

track track

track

track

track

settings

property

settings track

track

settings

track

track

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

21 of 98 27/01/2021, 07:47

1. Let be a new promise.

2. resolve with undefined.

3. Return .

3. Invoke and return the result of the applyConstraints template method where:

In the SelectSettings algorithm,

 is the MediaStreamTrack on which this method was called, and

settings dictionary refers to a possible instance of the MediaTrackSettings

dictionary.

In step 3 of the ApplyConstraints algorithm, all changes listed are to be made to ,

and

In step 4 of the ApplyConstraints algorithm, the requirement on getConstraints()

applies to the getConstraints() method of .

MediaStreamTrackState Enumeration description

live
The track is active (the track's underlying media source is making a best-effort attempt to

provide data in real time).

The output of a track in the "live" state can be switched on and off with the enabled

attribute.

ended
The track has ended (the track's underlying media source is no longer providing data, and

will never provide more data for this track). Once a track enters this state, it never exits it.

For example, a video track in a MediaStream ends when the user unplugs the USB web

camera that acts as the track's media source.

p

p

p

object

object

object

WebIDL

enum MediaStreamTrackState {

"live",

"ended"

};

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

22 of 98 27/01/2021, 07:47

MediaTrackSupportedConstraints represents the list of constraints recognized by a User Agent for

controlling the Capabilities of a MediaStreamTrack object. This dictionary is used as a function return

value, and never as an operation argument.

Future specifications can extend the MediaTrackSupportedConstraints dictionary by defining a

partial dictionary with dictionary members of type boolean.

NOTE

The constraints specified in this specification apply only to instances of

MediaStreamTrack generated by MediaDevices.getUserMedia(), unless stated

otherwise in other specifications.

width of type boolean, defaulting to true
See width for details.

height of type boolean, defaulting to true

4.3.4 MediaTrackSupportedConstraints

WebIDL

dictionary MediaTrackSupportedConstraints {

boolean width = true;

boolean height = true;

boolean aspectRatio = true;

boolean frameRate = true;

boolean facingMode = true;

boolean resizeMode = true;

boolean sampleRate = true;

boolean sampleSize = true;

boolean echoCancellation = true;

boolean autoGainControl = true;

boolean noiseSuppression = true;

boolean latency = true;

boolean channelCount = true;

boolean deviceId = true;

boolean groupId = true;

};

Dictionary MediaTrackSupportedConstraints Members

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

23 of 98 27/01/2021, 07:47

See height for details.

aspectRatio of type boolean, defaulting to true
See aspectRatio for details.

frameRate of type boolean, defaulting to true
See frameRate for details.

facingMode of type boolean, defaulting to true
See facingMode for details.

resizeMode of type boolean, defaulting to true
See resizeMode for details.

sampleRate of type boolean, defaulting to true
See sampleRate for details.

sampleSize of type boolean, defaulting to true
See sampleSize for details.

echoCancellation of type boolean, defaulting to true
See echoCancellation for details.

autoGainControl of type boolean, defaulting to true
See autoGainControl for details.

noiseSuppression of type boolean, defaulting to true
See noiseSuppression for details.

latency of type boolean, defaulting to true
See latency for details.

channelCount of type boolean, defaulting to true
See channelCount for details.

deviceId of type boolean, defaulting to true
See deviceId for details.

groupId of type boolean, defaulting to true
See groupId for details.

MediaTrackCapabilities represents the Capabilities of a MediaStreamTrack object.

Future specifications can extend the MediaTrackCapabilities dictionary by defining a partial

dictionary with dictionary members of appropriate type.

4.3.5 MediaTrackCapabilities

WebIDL

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

24 of 98 27/01/2021, 07:47

width of type ULongRange
See width for details.

height of type ULongRange
See height for details.

aspectRatio of type DoubleRange
See aspectRatio for details.

frameRate of type DoubleRange
See frameRate for details.

facingMode of type sequence<DOMString>
A camera can report multiple facing modes. For example, in a high-end telepresence solution

with several cameras facing the user, a camera to the left of the user can report both "left" and

"user". See facingMode for additional details.

resizeMode of type sequence<DOMString>
The User Agent MAY use cropping and downscaling to offer more resolution choices than this

camera naturally produces. The reported sequence MUST list all the means the UA may employ

to derive resolution choices for this camera. The value "none" MUST be present, indicating the

ability to constrain the UA from cropping and downscaling. See resizeMode for additional

details.

dictionary MediaTrackCapabilities {

ULongRange width;

ULongRange height;

DoubleRange aspectRatio;

DoubleRange frameRate;

sequence<DOMString> facingMode;

sequence<DOMString> resizeMode;

ULongRange sampleRate;

ULongRange sampleSize;

sequence<boolean> echoCancellation;

sequence<boolean> autoGainControl;

sequence<boolean> noiseSuppression;

DoubleRange latency;

ULongRange channelCount;

DOMString deviceId;

DOMString groupId;

};

Dictionary MediaTrackCapabilities Members

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

25 of 98 27/01/2021, 07:47

sampleRate of type ULongRange
See sampleRate for details.

sampleSize of type ULongRange
See sampleSize for details.

echoCancellation of type sequence<boolean>
If the source cannot do echo cancellation a single false is reported. If echo cancellation cannot

be turned off, a single true is reported. If the script can control the feature, the source reports a

list with both true and false as possible values. See echoCancellation for additional details.

autoGainControl of type sequence<boolean>
If the source cannot do auto gain control a single false is reported. If auto gain control cannot be

turned off, a single true is reported. If the script can control the feature, the source reports a list

with both true and false as possible values. See autoGainControl for additional details.

noiseSuppression of type sequence<boolean>
If the source cannot do noise suppression a single false is reported. If noise suppression cannot

be turned off, a single true is reported. If the script can control the feature, the source reports a

list with both true and false as possible values. See noiseSuppression for additional details.

latency of type DoubleRange
See latency for details.

channelCount of type ULongRange
See channelCount for details.

deviceId of type DOMString
See deviceId for details.

groupId of type DOMString
See groupId for details.

4.3.6 MediaTrackConstraints

WebIDL

dictionary MediaTrackConstraints : MediaTrackConstraintSet {

sequence<MediaTrackConstraintSet> advanced;

};

Dictionary MediaTrackConstraints Members

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

26 of 98 27/01/2021, 07:47

advanced of type sequence<MediaTrackConstraintSet>
See Constraints and ConstraintSet for the definition of this element.

Future specifications can extend the MediaTrackConstraintSet dictionary by defining a partial

dictionary with dictionary members of appropriate type.

width of type ConstrainULong
See width for details.

height of type ConstrainULong
See height for details.

aspectRatio of type ConstrainDouble
See aspectRatio for details.

frameRate of type ConstrainDouble
See frameRate for details.

facingMode of type ConstrainDOMString
See facingMode for details.

resizeMode of type ConstrainDOMString
See resizeMode for details.

WebIDL

dictionary MediaTrackConstraintSet {

ConstrainULong width;

ConstrainULong height;

ConstrainDouble aspectRatio;

ConstrainDouble frameRate;

ConstrainDOMString facingMode;

ConstrainDOMString resizeMode;

ConstrainULong sampleRate;

ConstrainULong sampleSize;

ConstrainBoolean echoCancellation;

ConstrainBoolean autoGainControl;

ConstrainBoolean noiseSuppression;

ConstrainDouble latency;

ConstrainULong channelCount;

ConstrainDOMString deviceId;

ConstrainDOMString groupId;

};

Dictionary MediaTrackConstraintSet Members

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

27 of 98 27/01/2021, 07:47

sampleRate of type ConstrainULong
See sampleRate for details.

sampleSize of type ConstrainULong
See sampleSize for details.

echoCancellation of type ConstrainBoolean
See echoCancellation for details.

autoGainControl of type ConstrainBoolean
See autoGainControl for details.

noiseSuppression of type ConstrainBoolean
See noiseSuppression for details.

latency of type ConstrainDouble
See latency for details.

channelCount of type ConstrainULong
See channelCount for details.

deviceId of type ConstrainDOMString
See deviceId for details.

groupId of type ConstrainDOMString
See groupId for details.

MediaTrackSettings represents the Settings of a MediaStreamTrack object.

Future specifications can extend the MediaTrackSettings dictionary by defining a partial dictionary

with dictionary members of appropriate type.

4.3.7 MediaTrackSettings

WebIDL

dictionary MediaTrackSettings {

long width;

long height;

double aspectRatio;

double frameRate;

DOMString facingMode;

DOMString resizeMode;

long sampleRate;

long sampleSize;

boolean echoCancellation;

boolean autoGainControl;

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

28 of 98 27/01/2021, 07:47

width of type long
See width for details.

height of type long
See height for details.

aspectRatio of type double
See aspectRatio for details.

frameRate of type double
See frameRate for details.

facingMode of type DOMString
See facingMode for details.

resizeMode of type DOMString
See resizeMode for details.

sampleRate of type long
See sampleRate for details.

sampleSize of type long
See sampleSize for details.

echoCancellation of type boolean
See echoCancellation for details.

autoGainControl of type boolean
See autoGainControl for details.

noiseSuppression of type boolean
See noiseSuppression for details.

latency of type double
See latency for details.

channelCount of type long
See channelCount for details.

deviceId of type DOMString

boolean noiseSuppression;

double latency;

long channelCount;

DOMString deviceId;

DOMString groupId;

};

Dictionary MediaTrackSettings Members

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

29 of 98 27/01/2021, 07:47

See deviceId for details.

groupId of type DOMString
See groupId for details.

The names of the initial set of constrainable properties for MediaStreamTrack are defined below.

The following constrainable properties are defined to apply to both video and audio

MediaStreamTrack objects:

Property

Name

Values Notes

deviceId DOMString The identifier of the device generating the content of the

MediaStreamTrack. It conforms with the definition of

MediaDeviceInfo.deviceId. Note that the setting of this property is

uniquely determined by the source that is attached to the

MediaStreamTrack. In particular, getCapabilities() will return

only a single value for deviceId. This property can therefore be used

for initial media selection with getUserMedia(). However, it is not

useful for subsequent media control with applyConstraints(), since

any attempt to set a different value will result in an unsatisfiable

ConstraintSet. If a string of length 0 is used as a deviceId value

constraint with getUserMedia(), it MAY be interpreted as if the

constraint is not specified.

groupId DOMString The document-unique group identifier for the device generating the

content of the MediaStreamTrack. It conforms with the definition of

MediaDeviceInfo.groupId. Note that the setting of this property is

uniquely determined by the source that is attached to the

MediaStreamTrack. In particular, getCapabilities() will return

only a single value for groupId. Since this property is not stable

between browsing sessions, its usefulness for initial media selection

with getUserMedia() is limited. It is not useful for subsequent media

control with applyConstraints(), since any attempt to set a different

value will result in an unsatisfiable ConstraintSet.

The following constrainable properties are defined to apply only to video MediaStreamTrack objects:

4.3.8 Constrainable Properties

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

30 of 98 27/01/2021, 07:47

Property

Name

Values Notes

width ConstrainULong The width or width range, in pixels. As a capability, the

range should span the video source's pre-set width values

with min being equal to 1 and max being the largest

width. The User Agent MUST support downsampling to

any value between the min width range value and the

native resolution width.

height ConstrainULong The height or height range, in pixels. As a capability, the

range should span the video source's pre-set height

values with min being equal to 1 and max being the

largest height. The User Agent MUST support

downsampling to any value between the min height

range value and the native resolution height.

frameRate ConstrainDouble The exact frame rate (frames per second) or frame rate

range. If video source's pre-set can determine frame rate

values, the range, as a capacity, should span the video

source's pre-set frame rate values with min being equal to

0 and max being the largest frame rate. The User Agent

MUST support frame rates obtained from integral

decimation of the native resolution frame rate. If this

frame rate cannot be determined (e.g. the source does not

natively provide a frame rate, or the frame rate cannot be

determined from the source stream), then this value

MUST refer to the User Agent's vsync display rate.

aspectRatio ConstrainDouble The exact aspect ratio (width in pixels divided by height

in pixels, represented as a double rounded to the tenth

decimal place) or aspect ratio range.

facingMode ConstrainDOMString This string (or each string, when a list) should be one of

the members of VideoFacingModeEnum. The members

describe the directions that the camera can face, as seen

from the user's perspective. Note that getConstraints

may not return exactly the same string for strings not in

this enum. This preserves the possibility of using a future

version of WebIDL enum for this property.

resizeMode ConstrainDOMString This string (or each string, when a list) should be one of

the members of VideoResizeModeEnum. The members

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

31 of 98 27/01/2021, 07:47

Property

Name

Values Notes

describe the means by which the resolution can be

derived by the UA. In other words, whether the UA is

allowed to use cropping and downscaling on the camera

output.

The UA MAY disguise concurrent use of the camera, by

cropping and/or downscaling to mimic native resolutions

when "none" is used, but only when the camera is in use

in another browsing context.

Note that getConstraints may not return exactly the

same string for strings not in this enum. This preserves

the possibility of using a future version of WebIDL enum

for this property.

On systems where it's desirable to sometimes automatically flip the X and Y axis of the resulting

captured video in response to ongoing environmental factors, the width, height and aspectRatio

constraints and capabilities MUST remain unaffected in all algorithms and be considered in the

primary orientation only, except for the getSettings() algorithm where settings for these

constrainable properties MUST be flipped if necessary to match the returned dimensions of the

captured video at any point in time.

The primary orientation of a system that supports flipping the X and Y axis of resulting captured

video is defined by the User Agent for the particular system.

NOTE

On systems that support automatic switching between landscape and

portrait mode, User Agents are encouraged to make landscape mode the

primary orientation.

WebIDL

enum VideoFacingModeEnum {

"user",

"environment",

"left",

"right"

};

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

32 of 98 27/01/2021, 07:47

VideoFacingModeEnum Enumeration description

user
The source is facing toward the user (a self-view camera).

environment
The source is facing away from the user (viewing the environment).

left
The source is facing to the left of the user.

right
The source is facing to the right of the user.

Below is an illustration of the video facing modes in relation to the user.

left user right

environment

person

Top down view

VideoResizeModeEnum Enumeration description

none
This resolution is offered by the camera, its driver, or the OS.

Note: The UA MAY report this value to disguise concurrent use, but only when the

WebIDL

enum VideoResizeModeEnum {

"none",

"crop-and-scale"

};

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

33 of 98 27/01/2021, 07:47

camera is in use in another browsing context.

crop-

and-

scale

This resolution is downscaled and/or cropped from a higher camera resolution by the

User Agent. The media MUST NOT be upscaled, stretched or have fake data created

that did not occur in the input source.

The following constrainable properties are defined to apply only to audio MediaStreamTrack objects:

Property Name Values Notes

sampleRate ConstrainULong The sample rate in samples per second for the audio

data.

sampleSize ConstrainULong The linear sample size in bits. This constraint can

only be satisfied for audio devices that produce linear

samples.

echoCancellation ConstrainBoolean When one or more audio streams is being played in

the processes of various microphones, it is often

desirable to attempt to remove all the sound being

played from the input signals recorded by the

microphones. This is referred to as echo cancellation.

There are cases where it is not needed and it is

desirable to turn it off so that no audio artifacts are

introduced. This allows applications to control this

behavior.

autoGainControl ConstrainBoolean Automatic gain control is often desirable on the input

signal recorded by the microphone. There are cases

where it is not needed and it is desirable to turn it off

so that the audio is not altered. This allows

applications to control this behavior.

noiseSuppression ConstrainBoolean Noise suppression is often desirable on the input

signal recorded by the microphone. There are cases

where it is not needed and it is desirable to turn it off

so that the audio is not altered. This allows

applications to control this behavior.

latency ConstrainDouble The latency or latency range, in seconds. The latency

is the time between start of processing (for instance,

when sound occurs in the real world) to the data being

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

34 of 98 27/01/2021, 07:47

Property Name Values Notes

available to the next step in the process. Low latency

is critical for some applications; high latency may be

acceptable for other applications because it helps with

power constraints. The number is expected to be the

target latency of the configuration; the actual latency

may show some variation from that.

channelCount ConstrainULong The number of independent channels of sound that the

audio data contains, i.e. the number of audio samples

per sample frame.

The addtrack and removetrack events use the MediaStreamTrackEvent interface.

The addtrack and removetrack events notify the script that the track set of a MediaStream has been

updated by the User Agent.

Firing a track event named with a MediaStreamTrack means that an event with the name ,

which does not bubble (except where otherwise stated) and is not cancelable (except where otherwise

stated), and which uses the MediaStreamTrackEvent interface with the track attribute set to ,

MUST be created and dispatched at the given target.

constructor()
Constructs a new MediaStreamTrackEvent.

4.4 MediaStreamTrackEvent

e track e

track

WebIDL

[Exposed=Window]

interface MediaStreamTrackEvent : Event {

constructor(DOMString type, MediaStreamTrackEventInit eventInitDict);

 [SameObject] readonly attribute MediaStreamTrack track;

};

Constructors

Attributes

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

35 of 98 27/01/2021, 07:47

track of type MediaStreamTrack, readonly
The track attribute represents the MediaStreamTrack object associated with the event.

track of type MediaStreamTrack, required

This section is non-normative.

User Agents provide a media pipeline from sources to sinks. In a User Agent, sinks are the ,

<video>, and <audio> tags. Traditional sources include streamed content, files, and web resources.

The media produced by these sources typically does not change over time - these sources can be

considered to be static.

The sinks that display these sources to the user (the actual tags themselves) have a variety of controls

for manipulating the source content. For example, an tag scales down a huge source image of

1600x1200 pixels to fit in a rectangle defined with width="400" and height="300".

The getUserMedia API adds dynamic sources such as microphones and cameras - the characteristics

of these sources can change in response to application needs. These sources can be considered to be

dynamic in nature. A <video> element that displays media from a dynamic source can either perform

scaling or it can feed back information along the media pipeline and have the source produce content

more suitable for display.

NOTE

Note: This sort of feedback loop is obviously just enabling an "optimization",

but it's a non-trivial gain. This optimization can save battery, allow for less

network congestion, etc...

Note that MediaStream sinks (such as <video>, <audio>, and even RTCPeerConnection) will

continue to have mechanisms to further transform the source stream beyond that which the Settings,

WebIDL

dictionary MediaStreamTrackEventInit : EventInit {

 required MediaStreamTrack track;

};

Dictionary MediaStreamTrackEventInit Members

5. The model: sources, sinks, constraints, and settings

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

36 of 98 27/01/2021, 07:47

Capabilities, and Constraints described in this specification offer. (The sink transformation options,

including those of RTCPeerConnection, are outside the scope of this specification.)

The act of changing or applying a track constraint may affect the settings of all tracks sharing that

source and consequently all down-level sinks that are using that source. Many sinks may be able to

take these changes in stride, such as the <video> element or RTCPeerConnection. Others like the

Recorder API may fail as a result of a source setting change.

The RTCPeerConnection is an interesting object because it acts simultaneously as both a sink and a

source for over-the-network streams. As a sink, it has source transformational capabilities (e.g.,

lowering bit-rates, scaling-up / down resolutions, and adjusting frame-rates), and as a source it could

have its own settings changed by a track source.

To illustrate how changes to a given source impact various sinks, consider the following example. This

example only uses width and height, but the same principles apply to all of the Settings exposed in this

specification. In the first figure a home client has obtained a video source from its local video camera.

The source's width and height settings are 800 pixels and 600 pixels, respectively. Three MediaStream

objects on the home client contain tracks that use this same <deviceId. The three media streams are

connected to three different sinks: a <video> element (A), another <video> element (B), and a peer

connection (C). The peer connection is streaming the source video to a remote client. On the remote

client there are two media streams with tracks that use the peer connection as a source. These two

media streams are connected to two <video> element sinks (Y and Z).

Home client
video source

<video
width=1920
height=1200>

Home Client Remote Client
A

Y

Remote client video source

Request home client
video source settings
change to:
width: 1920, height: 1200

width: 800
height: 600

Home client video sinks

Remote client
video sinks<video

width=320
height=200>

RTCPeerConnection

width: 1024
height: 768

B

C
Z

<video
width=150
height=100>

<video
width=1024
height=768>

Note that at this moment, all of the sinks on the home client must apply a transformation to the

original source's provided dimension settings. B is scaling the video down, A is scaling the video up

(resulting in loss of quality), and C is also scaling the video up slightly for sending over the network.

On the remote client, sink Y is scaling the video way down, while sink Z is not applying any scaling.

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

37 of 98 27/01/2021, 07:47

In response to applyConstraints() being called, one of the tracks wants a higher resolution (1920

by 1200 pixels) from the home client's video source.

Home client video sinks Remote client video source

Home Client Remote Client

Home client
video source

<video
width=1920
height=1200>

width: 1920
height: 1200

<video
width=320
height=200>

RTCPeerConnection

B

C

A

Remote client
video sinks

<video
width=150
height=100>

<video
width=1024
height=768>

Y

Z

width: 1024
height: 768

Note that the source change immediately affects all of the tracks and sinks on the home client, but

does not impact any of the sinks (or sources) on the remote client. With the increase in the home client

source video's dimensions, sink A no longer has to perform any scaling, while sink B must scale down

even further than before. Sink C (the peer connection) must now scale down the video in order to keep

the transmission constant to the remote client.

While not shown, an equally valid settings change request could be made on the remote client's side.

In addition to impacting sink Y and Z in the same manner as A, B and C were impacted earlier, it

could lead to re-negotiation with the peer connection on the home client in order to alter the

transformation that it is applying to the home client's video source. Such a change is NOT REQUIRED

to change anything related to sink A or B or the home client's video source.

Note that this specification does not define a mechanism by which a change to the remote client's

video source could automatically trigger a change to the home client's video source. Implementations

may choose to make such source-to-sink optimizations as long as they only do so within the

constraints established by the application, as the next example demonstrates.

It is fairly obvious that changes to a given source will impact sink consumers. However, in some

situations changes to a given sink may also cause implementations to adjust a source's settings. This is

illustrated in the following figures. In the first figure below, the home client's video source is sending a

video stream sized at 1920 by 1200 pixels. The video source is also unconstrained, such that the exact

source dimensions are flexible as far as the application is concerned. Two MediaStream objects

contain tracks with the same deviceId, and those MediaStreams are connected to two different

<video> element sinks A and B. Sink A has been sized to width="1920" and height="1200" and is

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

38 of 98 27/01/2021, 07:47

displaying the source's video content without any transformations. Sink B has been sized smaller and,

as a result, is scaling the video down to fit its rectangle of 320 pixels across by 200 pixels down.

Video element is
manipulated to
render at only
1024x768

<video
width=1920
height=1200>

<video
width=320
height=200>

Home client video sinks

B

A
Home client
video source

width: 1920
height: 1200

(no
constraints set)

Home Client

When the application changes sink A to a smaller dimension (from 1920 to 1024 pixels wide and from

1200 to 768 pixels tall), the User Agent's media pipeline may recognize that none of its sinks require

the higher source resolution, and needless work is being done both on the part of the source and sink

A. In such a case and without any other constraints forcing the source to continue producing the higher

resolution video, the media pipeline MAY change the source resolution:

Home client
video source

(no
constraints set)

width: 1024
height: 768

Home client video sinks

B

A
Home Client

<video
width=1024
height=768>

<video
width=320
height=200>

In the above figure, the home client's video source resolution was changed to the greater of that from

sink A and B in order to optimize playback. While not shown above, the same behavior could apply to

peer connections and other sinks.

It is possible that constraints can be applied to a track which a source is unable to satisfy, either

because the source itself cannot satisfy the constraint or because the source is already satisfying a

conflicting constraint. When this happens, the promise returned from applyConstraints() will be

rejected, without applying any of the new constraints. Since no change in constraints occurs in this

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

39 of 98 27/01/2021, 07:47

case, there is also no required change to the source itself as a result of this condition. Here is an

example of this behavior.

In this example, two media streams each have a video track that share the same source. The first track

initially has no constraints applied. It is connected to sink N. Sink N has a resolution of 800 by 600

pixels and is scaling down the source's resolution of 1024 by 768 to fit. The other track has a required

constraint forcing off the source's fill light; it is connected to sink P. Sink P has a width and height

equal to that of the source.

<video
width=800
height=600>

P

N

<video
width=1024
height=768>

Mandatory [contradictory]
fillLightMode: on applied
to track

Home client
video source

Home Client

width: 1024
height: 768
fillLightMode: off

Home client video sinks

mandatory:
fillLightMode: off

Now, the first track adds a required constraint that the fill light should be forced on. At this point, both

required constraints cannot be satisfied by the source (the fill light cannot be simultaneously on and

off at the same time). Since this state was caused by the first track's attempt to apply a conflicting

constraint, the constraint application fails and there is no change in the source's settings nor to the

constraints on either track.

A MediaStream may be assigned to media elements. A MediaStream is not preloadable or seekable

and represents a simple, potentially infinite, linear media timeline. The timeline starts at 0 and

increments linearly in real time as long as the media element is potentially playing. The timeline does

not increment when the playout of the MediaStream is paused.

User Agents that support this specification MUST support the srcObject attribute of the

HTMLMediaElement interface defined in [HTML], which includes support for playing MediaStream

6. MediaStreams in Media Elements

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

40 of 98 27/01/2021, 07:47

objects.

The [HTML] document outlines how the HTMLMediaElement works with a media provider object. The

following applies when the media provider object is a MediaStream:

Whenever an AudioTrack or a VideoTrack is created, the id and label attributes must be

initialized to the corresponding attributes of the MediaStreamTrack, the kind attribute must be

initialized to "main" and the language attribute to the empty string

The User Agent MUST always play the current data from the MediaStream and MUST NOT

buffer.

Since the order in the MediaStream 's track set is undefined, no requirements are put on how the

AudioTrackList and VideoTrackList is ordered

If the element is an HTMLVideoElement, then it is said to have ended playback when it has ended

video playback, which is when:

1. The element's readyState is HAVE_METADATA or greater, and

1. The MediaStream state is inactive after having been active, or

2. The MediaStream state is active after having been inactive after having been active

after play() was last called, and autoplay is false.

NOTE

Once playback has ended, it won't resume if new MediaStreamTracks

are added to the MediaStream unless autoplay is true or the element

is restarted, e.g., by the web application calling play().

If the element is an HTMLAudioElement, then it is said to have ended playback when it has ended

audio playback, which is when:

1. The element's readyState is HAVE_METADATA or greater, and

1. The MediaStream state is inaudible after having been audible, or

2. The MediaStream state is audible after having been inaudible after having been audible

after play() was last called, and autoplay is false.

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

41 of 98 27/01/2021, 07:47

NOTE

Once playback has ended, it won't resume if new audio

MediaStreamTracks are added to the MediaStream unless autoplay is

true or the element is restarted, e.g., by the web application calling

play().

Any calls to the fastSeek() method on a HTMLMediaElement must be ignored

The nature of the MediaStream places certain restrictions on the behavior of attributes of the

associated HTMLMediaElement and on the operations that can be performed on it, as shown below:

Attribute Name Attribute

Type

Setter/Getter Behavior

When Provider is a

MediaStream

Additional considerations

preload DOMString On getting: none. On

setting: ignored.

A MediaStream cannot be

preloaded.

buffered TimeRanges buffered.length

MUST return 0.

A MediaStream cannot be

preloaded. Therefore, the

amount buffered is always

an empty time range.

currentTime double Any non-negative

integer. The initial value

is 0 and the values

increments linearly in

real time whenever the

stream is playing.

The value is the official

playback position, in

seconds. Any attempt to

alter it MUST be ignored.

seeking boolean false A MediaStream is not

seekable. Therefore, this

attribute MUST always

return the value false.

defaultPlaybackRate double On getting: 1.0. On

setting: ignored.

A MediaStream is not

seekable. Therefore, this

attribute MUST always

return the value 1.0 and

any attempt to alter it

MUST be ignored. Note

that this also means that

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

42 of 98 27/01/2021, 07:47

Attribute Name Attribute

Type

Setter/Getter Behavior

When Provider is a

MediaStream

Additional considerations

the ratechange event will

not fire.

playbackRate double On getting: 1.0. On

setting: ignored.

A MediaStream is not

seekable. Therefore, this

attribute MUST always

return the value 1.0 and

any attempt to alter it

MUST be ignored. Note

that this also means that

the ratechange event will

not fire.

played TimeRanges played.length MUST

return 1.

played.start(0)

MUST return 0.

played.end(0) MUST

return the last known

currentTime.

A MediaStream's timeline

always consists of a single

range, starting at 0 and

extending up to the

currentTime.

seekable TimeRanges seekable.length

MUST return 0.

A MediaStream is not

seekable.

loop boolean true, false Setting the loop attribute

has no effect since a

MediaStream has no

defined end and therefore

cannot be looped.

Since none of the setters listed above alter internal state of the HTMLMediaElement, once a

MediaStream is no longer the element's assigned media provider object, the attributes listed will

appear to resume the values they had before a stream was assigned to the element.

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

43 of 98 27/01/2021, 07:47

NOTE

A MediaStream stops being the element's assigned media provider object

when srcObject is assigned null or a non-stream object, just ahead of the

media element load algorithm. As a result, the ratechange event may fire

(from step 7) if playbackRate and defaultPlaybackRate were different from

before a MediaStream was assigned.

Some operations throw or fire OverconstrainedError. This is an extension of DOMException that

carries additional information related to constraints failure.

OverconstrainedError
Run the following steps:

1. Let be the constructor's first argument.

2. Let be the constructor's second argument.

3. Let be a new OverconstrainedError object.

4. Invoke the DOMException constructor of with the message argument set to and

the name argument set to "OverconstrainedError".

7. Error Handling

7.1 OverconstrainedError Interface

WebIDL

[Exposed=Window]

interface OverconstrainedError : DOMException {

constructor(DOMString constraint, optional DOMString message = "");

 readonly attribute DOMString constraint;

};

7.1.1 Constructors

constraint

message

e

e message

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

44 of 98 27/01/2021, 07:47

NOTE

This name does not have a mapping to a legacy code so 's code

attribute will return 0.

5. Set to .

6. Return .

constraint of type DOMString, readonly
The name of a constraint associated with this error, or "" if no specific constraint name is

revealed.

This section is non-normative.

The following events fire on MediaStream objects:

Event name Interface Fired when...

addtrack MediaStreamTrackEvent A new MediaStreamTrack has been added to this stream.

Note that this event is not fired when the script directly

modifies the tracks of a MediaStream.

removetrack MediaStreamTrackEvent A MediaStreamTrack has been removed from this stream.

Note that this event is not fired when the script directly

modifies the tracks of a MediaStream.

The following events fire on MediaStreamTrack objects:

Event

name

Interface Fired when...

mute Event The MediaStreamTrack object's source is temporarily unable to provide data.

unmute Event The MediaStreamTrack object's source is live again after having been

temporarily unable to provide data.

e

e.constraint constraint

e

7.1.2 Attributes

8. Event summary

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

45 of 98 27/01/2021, 07:47

ended Event
The MediaStreamTrack object's source will no longer provide any data, either

because the user revoked the permissions, or because the source device has

been ejected, or because the remote peer permanently stopped sending data.

The following events fire on MediaDevices objects:

Event name Interface Fired when...

devicechange Event The set of media devices, available to the User Agent, has changed. The

current list devices can be retrieved with the enumerateDevices()

method.

This section describes an API that the script can use to query the User Agent about connected media

input and output devices (for example a web camera or a headset).

mediaDevices of type MediaDevices, readonly
Returns the MediaDevices object associated with this Navigator object.

The MediaDevices object is the entry point to the API used to examine and get access to media

devices available to the User Agent.

9. Enumerating Local Media Devices

9.1 Navigator Interface Extensions

WebIDL

partial interface Navigator {

 [SameObject, SecureContext] readonly attribute MediaDevices mediaDevices;

};

Attributes

9.2 MediaDevices

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

46 of 98 27/01/2021, 07:47

On page load, run the following steps:

1. On the relevant global object, run the following steps:

1. Create three internal slots: [[devicesLiveMap]], [[devicesAccessibleMap]], and

[[kindsAccessibleMap]], each initialized to a different empty object.

2. Create one internal slot: [[storedDeviceList]], initialized to null.

3. Create one internal slot: [[canExposeDeviceInfo]], initialized to false.

2. For each kind of device, , that MediaDevices.getUserMedia() exposes, set

[[kindsAccessibleMap]] either to true if the result of reading the permission state of the

permission associated with (e.g. "camera", "microphone"), is "granted", or to false

otherwise.

3. For each individual device that MediaDevices.getUserMedia() exposes, using the device's

deviceId, , set [[devicesLiveMap]] to false, and set

[[devicesAccessibleMap]] either to true if the result of reading the permission state of

the permission associated with the device’s kind and , is "granted", or to false

otherwise.

For each kind of device, , that getUserMedia() exposes, whenever a transition occurs of the

permission state of the permission associated with , run the following steps:

1. If the transition is to "granted" from another value, then set [[kindsAccessibleMap]] to

true.

2. If the transition is from "granted" to another value, then set [[kindsAccessibleMap]] to

false.

For each device that getUserMedia() exposes, whenever a transition occurs of the permission state of

the permission associated with the device's kind and the device's deviceId, , run the following

steps:

1. If the transition is to "granted" from another value, then set [[devicesAccessibleMap]]

to true, if it isn’t already true.

2. If the transition is from "granted" to another value, and the device is currently stopped, then set

[[devicesAccessibleMap]] to false.

When new media input and/or output devices of a MediaDeviceKind are made available where zero

devices of that MediaDeviceKind were available before, or the lone input and/or output device of a

kind

[kind]

kind

deviceId [deviceId]

[deviceId]

deviceId

kind

kind

[kind]

[kind]

deviceId

[deviceId]

[deviceId]

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

47 of 98 27/01/2021, 07:47

MediaDeviceKind becomes unavailable, the User Agent MUST run the following device change

notification steps in browsing contexts for which device enumeration can proceed is true and device

information can be exposed is false, but in no other contexts:

1. If [[storedDeviceList]] already lists the exact same set of devices in the same order as the list of

devices that would be generated by a call to enumerateDevices now, then abort these steps.

NOTE

Due to the enumerateDevices algorithm, the above step limits firing the

devicechange event to documents allowed to use enumerateDevices to

enumerate devices of a particular MediaDeviceKind.

2. Set [[storedDeviceList]] to null.

3. Queue a task that fires a simple event named devicechange at the MediaDevices object.

The User Agent MAY combine firing multiple events into firing one event when several events

are due or when multiple devices are added or removed at the same time, e.g. a camera with a

microphone.

Additionally, when new media input and/or output devices are made available, or any available input

and/or output device becomes unavailable, or the system default for camera or microphone changed,

the User Agent MUST run the device change notification steps in browsing contexts for which device

enumeration can proceed is true and device information can be exposed is true, but in no other

contexts.

In both cases above, if a browsing context that was traversed comes to meet the device enumeration

can proceed criteria later (e.g. gains focus), the User Agent MUST execute the device change

notification steps on the browsing context at that time.

NOTE

These events are potentially triggered simultaneously on documents of

different origins. User Agents MAY add fuzzing on the timing of events to

avoid cross-origin activity correlation.

WebIDL

[Exposed=Window, SecureContext]

interface MediaDevices : EventTarget {

 attribute EventHandler ondevicechange;

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

48 of 98 27/01/2021, 07:47

ondevicechange of type EventHandler
The event type of this event handler is devicechange.

enumerateDevices
Collects information about the User Agent's available media input and output devices.

This method returns a promise. The promise will be fulfilled with a sequence of

MediaDeviceInfo objects representing the User Agent's available media input and output

devices if enumeration is successful.

Elements of this sequence that represent input devices will be of type InputDeviceInfo which

extends MediaDeviceInfo.

Camera and microphone sources SHOULD be enumerable. Specifications that add additional

types of source will provide recommendations about whether the source type should be

enumerable.

When the enumerateDevices() method is called, the User Agent must run the following steps:

1. Let be a new promise.

2. Run the following steps in parallel:

1. Let be the relevant settings object's responsible document.

2. The User Agent MUST wait to proceed to the next step until device enumeration can

proceed is true.

The User Agent MAY wait to proceed to the next step until is fully active and

has focus.

3. Let be an empty list.

4. If [[storedDeviceList]] is not null, run the following sub steps:

Promise<sequence<MediaDeviceInfo>> enumerateDevices();

};

Attributes

Methods

p

document

document

resultList

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

49 of 98 27/01/2021, 07:47

1. For each MediaDeviceInfo object in [[storedDeviceList]], :

Append to a MediaDeviceInfo copy of .

2. resolve with .

3. Abort these steps.

5. Probe the User Agent for available media devices, and let be be the list of all

discovered devices.

6. Let , and be empty lists.

7. Run the following sub steps for each discovered device in , :

1. If is not a microphone, or is not allowed to use the feature

identified by "microphone", abort these sub steps and continue with the next

device (if any).

2. Let be the result of creating a device info object to represent .

3. If is the system default microphone, prepend to .

Otherwise, append to .

8. Run the following sub steps for each discovered device in , :

1. If is not a camera, or is not allowed to use the feature identified

by "camera", abort these sub steps and continue with the next device (if any).

2. Let be the result of creating a device info object to represent .

3. If is the system default camera, prepend to .

Otherwise, append to .

9. If device information can be exposed is false, run the following sub steps:

1. Add to the first item of if is not empty.

2. Add to the first item of if is not empty.

10. Otherwise, run the following steps:

1. Run the following sub steps for each discovered device in , :

1. If is a microphone or is a camera, abort these sub steps and

storedDeviceInfo

resultList storedDeviceInfo

p resultList

deviceList

microphoneList cameraList otherDeviceList

deviceList device

device document

deviceInfo device

device deviceInfo microphoneList

deviceInfo microphoneList

deviceList device

device document

deviceInfo device

device deviceInfo cameraList

deviceInfo cameraList

resultList microphoneList microphoneList

resultList cameraList cameraList

deviceList device

device device

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

50 of 98 27/01/2021, 07:47

continue with the next device (if any).

2. Run the exposure decision algorithm for devices other than camera and

microphone, with , and as input. If the

result of this algorithm is false, abort these sub steps and continue with the

next device (if any).

3. Let be the result of creating a device info object to represent

.

4. If is the system default audio output, prepend to

. Otherwise, append to .

2. Append to all devices of in order.

3. Append to all devices of in order.

4. Append to all devices of in order.

11. Set [[storedDeviceList]] to .

12. resolve with .

3. Return .

Since this method returns persistent information across browsing sessions and origins via the

availability of media capture devices, it adds to the fingerprinting surface exposed by the User

Agent.

As long as the responsible document did not capture, this method will limit exposure to two bits

of information: whether there is a camera and whether there is a microphone. A User Agent may

mitigate this by pretending the system has a camera and a microphone, for instance until the

responsible document calls getUserMedia() with constraints deemed reasonable.

After the responsible document started capture, it provides additional persistent cross-origin

information via the list of all media capture devices, including their grouping and human readable

labels associated with the capture devices, which further adds to the fingerprinting surface. A

User Agent may limit exposure by sanitizing device labels. This could for instance mean

removing user names found in labels, but keeping device manufacturer or model information. It

is important that the sanitized labels allow users to identify the corresponding devices.

device microphoneList cameraList

deviceInfo

device

device deviceInfo

otherDeviceList deviceInfo otherDeviceList

resultList microphoneList

resultList cameraList

resultList otherDeviceList

resultList

p resultList

p

9.2.1 Access control model

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

51 of 98 27/01/2021, 07:47

The algorithm described above means that the access to media device information depends on whether

or not the responsible document did capture.

For camera and microphone devices, if the browsing context did not capture (i.e. getUserMedia()

was not called or never resolved successfully), the MediaDeviceInfo object will contain a valid value

for kind but empty strings for deviceId, label, and groupId. Additionally, at most one device of

each kind will be listed in enumerateDevices() result.

Otherwise, the MediaDeviceInfo object will contain meaningful values for deviceId, kind, label,

and groupId. All available devices are listed in enumerateDevices() result.

To perform creating a device info object to represent a discovered device, , run the following

steps:

1. Let be a new MediaDeviceInfo object to represent .

2. Initialize .kind for .

3. If .kind is equal to "audioinput" or "videoinput" and device information can be

exposed is false, return

4. Initialize .label for .

5. If a stored deviceId exists for , initialize .deviceId to that value. Otherwise, let

.deviceId be a newly generated unique identifier as described under deviceId.

6. If belongs to the same physical device as a device already represented for ,

initialize .groupId to the groupId value of the existing MediaDeviceInfo object.

Otherwise, let .groupId be a newly generated unique identifier as described under

groupId.

7. Return

To perform a device enumeration can proceed check, run the following steps:

1. If device information can be exposed is true, return true.

2. If the relevant settings object's responsible document is fully active and has focus, return true.

3. Return false.

device

deviceInfo device

deviceInfo device

deviceInfo

deviceInfo

deviceInfo device

device deviceInfo

deviceInfo

device document

deviceInfo

deviceInfo

deviceInfo

9.2.2 Device information exposure

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

52 of 98 27/01/2021, 07:47

To perform a device information can be exposed check, run the following steps:

1. If any of the local devices are attached to a live MediaStreamTrack in the relevant settings

object's responsible document, return true.

2. Return [[canExposeDeviceInfo]].

To set the device information exposure, with a of type boolean, run the following steps:

1. If [[canExposeDeviceInfo]] is already , abort these steps.

2. If is true, set [[storedDeviceList]] to null.

3. Set [[canExposeDeviceInfo]] to .

NOTE

A User Agent MAY at any point set the device information exposure back to

false, for instance if the User Agent decides to revoke device access on a

given browsing context.

The exposure decision algorithm for devices other than camera and microphone takes a ,

 and as input and returns a boolean to decide whether exposing the device

to the web page or not.

By default, it returns false.

Other specifications can define the algorithm for specific device types.

9.2.3 Set device information exposure

value

value

value

value

9.2.4 Exposure decision algorithm for devices other than camera and microphone

device

microphoneList cameraList

9.3 Device Info

WebIDL

[Exposed=Window, SecureContext]

interface MediaDeviceInfo {

 readonly attribute DOMString deviceId;

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

53 of 98 27/01/2021, 07:47

deviceId of type DOMString, readonly
The identifier of the represented device. The device MUST be uniquely identified by its identifier

and its kind.

To to ensure stored identifiers are recognized, the identifier MUST be the same in documents of

the same origin in top-level browsing contexts. In nested browsing contexts, the decision of

whether or not the identifier is the same across documents, MUST follow the User Agent's

partitioning rules for storage (such as localStorage), if any, to not interfere with mitigations for

cross-site correlation. If the identifier can uniquely identify the user, then it MUST be un-

guessable in documents from other origins to prevent the identifier from being used to correlate

the same user across different origins. An identifier can be reused across origins as long as it is

not tied to the user and can be guessed by other means, like the User-Agent string.

If any local devices have been attached to a live MediaStreamTrack in a page from this origin, or

stored permission to access local devices has been granted to this origin, then this identifier

MUST be persisted, except as detailed below. Unique and stable identifiers let the application

save, identify the availability of, and directly request specific sources, across multiple visits.

However, as long as no local device has been attached to a live MediaStreamTrack in a page from

this origin, and no stored permission to access local devices has been granted to this origin, then

the User Agent MAY clear this identifier once the last browsing session from this origin has been

closed. If the User Agent chooses not to clear the identifier in this condition, then it MUST

provide for the user to visibly inspect and delete the identifier, like a cookie.

Since deviceId may persist across browsing sessions and to reduce its potential as a

fingerprinting mechanism, deviceId is to be treated as other persistent storage mechanisms such

as cookies [COOKIES], in that User Agents MUST NOT persist device identifiers for sites that

are blocked from using cookies, and User Agents MUST rotate per-origin device identifiers when

other persistent storage are cleared.

kind of type MediaDeviceKind, readonly
The kind of the represented device.

 readonly attribute MediaDeviceKind kind;

 readonly attribute DOMString label;

 readonly attribute DOMString groupId;

 [Default] object toJSON();

};

Attributes

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

54 of 98 27/01/2021, 07:47

label of type DOMString, readonly
A label describing this device (for example "External USB Webcam"). This label is intended to

allow the end user to tell the difference between devices. Applications can’t assume that the label

contains any specific information, such as the device type or model. If the device has no

associated label, then this attribute MUST return the empty string.

groupId of type DOMString, readonly
The group identifier of the represented device. Two devices have the same group identifier if they

belong to the same physical device. For example, the audio input and output devices representing

the speaker and microphone of the same headset have the same groupId.

The group identifier MUST be uniquely generated for each document.

toJSON
When called, run [WEBIDL]'s default toJSON steps.

MediaDeviceKind Enumeration description

audioinput
Represents an audio input device; for example a microphone.

audiooutput
Represents an audio output device; for example a pair of headphones.

videoinput
Represents a video input device; for example a webcam.

The InputDeviceInfo interface gives access to the capabilities of the input device it represents.

Methods

WebIDL

enum MediaDeviceKind {

"audioinput",

"audiooutput",

"videoinput"

};

9.4 Input-specific Device Info

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

55 of 98 27/01/2021, 07:47

getCapabilities
Returns a MediaTrackCapabilities object describing the primary audio or video track of a

device's MediaStream (according to its kind value), in the absence of any user-supplied

constraints. These capabilities MUST be identical to those that would have been obtained by

calling getCapabilities() on the first MediaStreamTrack of this type in a MediaStream

returned by getUserMedia({deviceId: id}) where is the value of the deviceId attribute of

this MediaDeviceInfo.

If no access has been granted to any local devices and this InputDeviceInfo has been filtered

with respect to unique identifying information (see above description of enumerateDevices()

result), then this method returns an empty dictionary.

This section extends Navigator and MediaDevices with APIs to request permission to access media

input devices available to the User Agent.

Alternatively, a local MediaStream can be captured from certain types of DOM elements, such as the

video element [mediacapture-fromelement]. This can be useful for automated testing.

WebIDL

[Exposed=Window]

interface InputDeviceInfo : MediaDeviceInfo {

MediaTrackCapabilities getCapabilities();

};

Methods

id

10. Obtaining local multimedia content

10.1 Legacy Interface Extensions

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

56 of 98 27/01/2021, 07:47

NOTE

The definition of getUserMedia() in this section reflects two major changes

from the method definition that has existed here for many months.

First, the official definition for the getUserMedia() method, and the one which

developers are encouraged to use, is now at MediaDevices. This decision

reflected consensus as long as the original API remained available here

under the Navigator object for backwards compatibility reasons, since the

working group acknowledges that early users of these APIs have been

encouraged to define getUserMedia as "var getUserMedia =

navigator.getUserMedia || navigator.webkitGetUserMedia ||

navigator.mozGetUserMedia;" in order for their code to be functional both

before and after official implementations of getUserMedia() in popular User

Agents. To ensure functional equivalence, the getUserMedia() method here

is defined in terms of the method under MediaDevices.

Second, the decision to change all other callback-based methods in the

specification to be based on Promises instead required that the

navigator.getUserMedia() definition reflect this in its use of

navigator.mediaDevices.getUserMedia(). Because navigator.getUserMedia()

is now the only callback-based method remaining in the specification, there

is ongoing discussion as to a) whether it still belongs in the specification,

and b) if it does, whether its syntax should remain callback-based or change

in some way to use Promises. Input on these questions is encouraged,

particularly from developers actively using today's implementations of this

functionality.

Note that the other methods that changed from a callback-based syntax to a

Promises-based syntax were not considered to have been implemented

widely enough in any form to have to consider legacy usage.

WebIDL

partial interface Navigator {

 [SecureContext] undefined getUserMedia(MediaStreamConstraints constraints,

NavigatorUserMediaSuccessCallback

successCallback,

NavigatorUserMediaErrorCallback

errorCallback);

};

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

57 of 98 27/01/2021, 07:47

getUserMedia
Prompts the user for permission to use their Web cam or other video or audio input.

The argument is a dictionary of type MediaStreamConstraints.

The will be invoked with a suitable MediaStream object as its argument if the

user accepts valid tracks as described in getUserMedia() on MediaDevices.

The will be invoked if there is a failure in finding valid tracks or if the user denies

permission, as described in getUserMedia() on MediaDevices.

When the getUserMedia() method is called, the User Agent MUST run the following steps:

1. Let be the method's first argument.

2. Let be the callback indicated by the method's second argument.

3. Let be the callback indicated by the method's third argument.

4. Run the steps specified by the getUserMedia() algorithm with as the argument,

and let be the resulting promise.

5. Upon fulfillment of with value , run the following step:

1. Invoke with as the argument.

6. Upon rejection of with reason , run the following step:

1. Invoke with as the argument.

Methods

constraints

successCallback

errorCallback

constraints

successCallback

errorCallback

constraints

p

p stream

successCallback stream

p r

errorCallback r

10.2 MediaDevices Interface Extensions

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

58 of 98 27/01/2021, 07:47

NOTE

The definition of getUserMedia() in this section reflects two major changes

from the method definition that has existed under Navigator for many

months.

First, the official definition for the getUserMedia() method, and the one which

developers are encouraged to use, is now the one defined here under

MediaDevices. This decision reflected consensus as long as the original API

remained available at Navigator.getUserMedia under the Navigator object for

backwards compatibility reasons, since the working group acknowledges

that early users of these APIs have been encouraged to define getUserMedia

as "var getUserMedia = navigator.getUserMedia ||

navigator.webkitGetUserMedia || navigator.mozGetUserMedia;" in order for

their code to be functional both before and after official implementations of

getUserMedia() in popular User Agents. To ensure functional equivalence,

the getUserMedia() method under Navigator is defined in terms of the

method here.

Second, the method defined here is Promises-based, while the one defined

under Navigator is currently still callback-based. Developers expecting to

find getUserMedia() defined under Navigator are strongly encouraged to read

the detailed Note given there.

The getSupportedConstraints method is provided to allow the application to determine which

constraints the User Agent recognizes.

getSupportedConstraints
Returns a dictionary whose members are the constrainable properties known to the User Agent. A

supported constrainable property MUST be represented and any constrainable properties not

WebIDL

partial interface MediaDevices {

MediaTrackSupportedConstraints getSupportedConstraints();

Promise<MediaStream> getUserMedia(optional MediaStreamConstraints

constraints = {});

};

Methods

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

59 of 98 27/01/2021, 07:47

supported by the User Agent MUST NOT be present in the returned dictionary. The values

returned represent what the User Agent implements and will not change during a browsing

session.

getUserMedia
Prompts the user for permission to use their Web cam or other video or audio input.

The argument is a dictionary of type MediaStreamConstraints.

This method returns a promise. The promise will be fulfilled with a suitable MediaStream object

if the user accepts valid tracks as described below.

The promise will be rejected if there is a failure in finding valid tracks or if the user denies

permission, as described below.

When the getUserMedia() method is called, the User Agent MUST run the following steps:

1. Let be the method's first argument.

2. Let be the set of media types in with either a dictionary

value or a value of true.

3. If is the empty set, return a promise rejected with a TypeError. The

word "optional" occurs in the WebIDL due to WebIDL rules, but the argument MUST be

supplied in order for the call to succeed.

4. If the relevant settings object's responsible document is NOT fully active, return a promise

rejected with a DOMException object whose name attribute has the value

"InvalidStateError".

5. Let be a new promise.

6. Run the following steps in parallel:

1. The User Agent MUST wait to proceed to the next step until the relevant settings

object's responsible document is fully active and has focus.

2. Let be an (initially) empty set.

3. For each media type in , run the following steps:

1. For each possible source for media of type , construct an unconstrained

MediaStreamTrack with that source as its source.

constraints

constraints

requestedMediaTypes constraints

requestedMediaTypes

p

finalSet

kind requestedMediaTypes

kind

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

60 of 98 27/01/2021, 07:47

Call this set of tracks the .

If is the empty set, reject with a new DOMException object whose

name attribute has the value "NotFoundError" and abort these steps.

2. If the value of the entry of is true, set to the empty constraint

set (no constraint). Otherwise, continue with set to the value of the entry

of .

3. Remove any constrainable property inside of that are not defined for

MediaStreamTrack objects of type . This means that audio-only constraints

inside of "video" and video-only constraints inside of "audio" are simply

ignored rather than causing OverconstrainedError.

4. If contains a member that is a required constraint and whose name is not in the

list of allowed required constraints for device selection, then reject with a

TypeError, and abort these steps.

5. Run the SelectSettings algorithm on each track in with as the

constraint set. If the algorithm returns undefined, remove the track from

. This eliminates devices unable to satisfy the constraints, by

verifying that at least one settings dictionary exists that satisfies the constraints.

If is the empty set, let be any required constraint

whose fitness distance was infinity for all settings dictionaries examined while

executing the SelectSettings algorithm, or "" if there isn't one, and jump to the

step labeled Constraint Failure below.

This error gives information about what the underlying device is not capable of

producing, before the user has given any authorization to any device, and can thus

be used as a fingerprinting surface.

6. Read the current permission state for all candidate devices in that are

not attached to a live MediaStreamTrack in the current browsing context. Remove

from any device for which the permission state is "denied".

If is now empty, indicating that all devices of this type are in state

"denied", jump to the step labeled PermissionFailure below.

7. Optionally, e.g., based on a previously-established user preference, for security

reasons, or due to platform limitations, jump to the step labeled Permission

Failure below.

candidateSet

candidateSet p

kind constraints CS

CS kind

constraints

CS

kind

CS

p

candidateSet CS

candidateSet

candidateSet failedConstraint

candidateSet

candidateSet

candidateSet

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

61 of 98 27/01/2021, 07:47

8. Add all tracks from to .

4. Let be a new and empty MediaStream object.

5. For each media type in , run the following sub steps,

preferably at the same time:

NOTE

User Agents are encouraged to bundle concurrent requests for

different kinds of media into a single user-facing permission

prompt.

1. Request permission to use a PermissionDescriptor with its name member set to

the permission name associated with (e.g. "camera" for "video",

"microphone" for "audio"), and, optionally, consider its deviceId member set to

any appropriate device's , while considering all devices attached to a live

and same-permission MediaStreamTrack in the current browsing context to have

permission status "granted", resulting in a set of provided media. Same-

permission in this context means a MediaStreamTrack that required the same

level of permission to obtain as what is being requested (e.g. not isolated).

When asking the user’s permission, the User Agent MUST disclose whether

permission will be granted only to the device chosen, or to all devices of that .

Let be the provided media, which MUST be precisely one track of type

from . The decision of which track to choose from the is

completely up to the User Agent and may be determined by asking the user. Once

selected, the source of the MediaStreamTrack MUST NOT change.

The User Agent SHOULD use the value of the computed fitness distance from the

SelectSettings algorithm as an input to the selection algorithm. However, it MAY

also use other internally-available information about the devices, such as user

preference.

User Agents are encouraged to default to using the user's primary or system

default device for (when possible). User Agents MAY allow users to use any

media source, including pre-recorded media files.

2. If the user never responds, this algorithm stalls on this step.

3. If the result of the request is "denied", jump to the step labeled Permission

candidateSet finalSet

stream

kind requestedMediaTypes

kind

deviceId

kind

track kind

finalSet finalSet

kind

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

62 of 98 27/01/2021, 07:47

Failure below.

4. The result of the request is "granted". If a hardware error such as an OS/program

/webpage lock prevents access, remove from . If has no track

of type , reject with a new DOMException object whose name attribute has

the value "NotReadableError" and abort these steps. Otherwise, restart these sub

steps with the updated .

If device access fails for any reason other than those listed above, remove

from . If has no track of type , reject with a new

DOMException object whose name attribute has the value "AbortError" and abort

these steps. Otherwise, restart these sub steps with the updated .

5. Using the granted device's deviceId, , set [[devicesLiveMap]][] to

true, if it isn’t already true, and set the [[devicesAccessibleMap]][] to

true, if it isn’t already true.

6. Add to 's track set.

6. Run the ApplyConstraints algorithm on all tracks in with the appropriate

constraints. If any of them returns something other than undefined, let

 be that result and jump to the step labeled Constraint Failure below.

7. Set the device information exposure to true.

8. resolve with and abort these steps.

9. Permission Failure: Reject with a new DOMException object whose name attribute

has the value "NotAllowedError".

10. Constraint Failure: Let be either undefined or an informative human-

readable message, let be if device information can be

exposed is true, or "" otherwise, and then reject with a new OverconstrainedError

created by calling OverconstrainedError(,).

7. Return .

NOTE

In the algorithm above, constraints are checked twice - once at device

selection, and once after access approval. Time may have passed between

those checks, so it is conceivable that the selected device is no longer

suitable. In this case, a NotReadableError will result.

track finalSet finalSet

kind p

finalSet

track

finalSet finalSet kind p

finalSet

deviceId deviceId

deviceId

track stream

stream

failedConstraint

p stream

p

message

constraint failedConstraint

p

constraint message

p

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

63 of 98 27/01/2021, 07:47

The allowed required constraints for device selection contains the following constraint names:

width, height, aspectRatio, frameRate, facingMode, resizeMode, sampleRate, sampleSize,

echoCancellation, autoGainControl, noiseSuppression, latency, channelCount, deviceId, groupId.

The MediaStreamConstraints dictionary is used to instruct the User Agent what sort of

MediaStreamTracks to include in the MediaStream returned by getUserMedia().

video of type (boolean or MediaTrackConstraints), defaulting to false
If true, it requests that the returned MediaStream contain a video track. If a Constraints

structure is provided, it further specifies the nature and settings of the video Track. If false, the

MediaStream MUST NOT contain a video Track.

audio of type (boolean or MediaTrackConstraints), defaulting to false
If true, it requests that the returned MediaStream contain an audio track. If a Constraints

structure is provided, it further specifies the nature and settings of the audio Track. If false, the

MediaStream MUST NOT contain an audio Track.

stream of type MediaStream

10.3 MediaStreamConstraints

WebIDL

dictionary MediaStreamConstraints {

 (boolean or MediaTrackConstraints) video = false;

 (boolean or MediaTrackConstraints) audio = false;

};

Dictionary MediaStreamConstraints Members

10.4 NavigatorUserMediaSuccessCallback

WebIDL

callback NavigatorUserMediaSuccessCallback = undefined (MediaStream stream);

Callback NavigatorUserMediaSuccessCallback Parameters

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

64 of 98 27/01/2021, 07:47

MediaStream object representing the stream to which the user granted permission as described in

the Navigator.getUserMedia algorithm.

error of type DOMException
Error in obtaining a MediaStream as described in the failure steps of the

Navigator.getUserMedia algorithm.

This section is non-normative.

10.5 NavigatorUserMediaErrorCallback

WebIDL

callback NavigatorUserMediaErrorCallback = undefined (DOMException error);

Callback NavigatorUserMediaErrorCallback Parameters

10.6 Implementation Suggestions

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

65 of 98 27/01/2021, 07:47

Best Practice 1: Resource reservation

The User Agent is encouraged to reserve resources when it has determined that a given call to

getUserMedia() will be successful. It is preferable to reserve the resource prior to resolving the

returned promise. Subsequent calls to getUserMedia() (in this page or any other) should treat

the resource that was previously allocated, as well as resources held by other applications, as

busy. Resources marked as busy should not be provided as sources to the current web page,

unless specified by the user. Optionally, the User Agent may choose to provide a stream sourced

from a busy source but only to a page whose origin matches the owner of the original stream that

is keeping the source busy.

This document recommends that in the permission grant dialog or device selection interface (if

one is present), the user be allowed to select any available hardware as a source for the stream

requested by the page (provided the resource is able to fulfill any specified required constraints).

Although not specifically recommended as best practice, note that some User Agents may

support the ability to substitute a video or audio source with local files and other media. A file

picker may be used to provide this functionality to the user.

This document also recommends that the user be shown all resources that are currently busy as a

result of prior calls to getUserMedia() (in this page or any other page that is still alive) and be

allowed to terminate that stream and utilize the resource for the current page instead. If possible

in the current operating environment, it is also suggested that resources currently held by other

applications be presented and treated in the same manner. If the user chooses this option, the

track corresponding to the resource that was provided to the page whose stream was affected

must be removed.

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

66 of 98 27/01/2021, 07:47

Best Practice 2: Stored Permission s

When permission is requested for a device, the User Agent may choose to store this permission

for later use by the same origin, so that the user does not need to grant permission again at a later

time. It is a User Agent choice whether it offers functionality to store permission to each device

separately, all devices of a given class, or all devices; the choice needs to be apparent to the user,

and permission must have been granted for the entire set whose permission is being stored, e.g.,

to store permission to use all cameras the user must have given permission to use all cameras and

not just one.

As described, this specification does not dictate whether or not granting permission results in a

stored permission. When permission is not stored, permission will last only until such time as all

MediaStreamTracks sourced from that device have been stopped.

Best Practice 3: Handling multiple devices

A MediaStream may contain more than one video and audio track. This makes it possible to

include video from two or more webcams in a single stream object, for example. However, the

current API does not allow a page to express a need for multiple video streams from independent

sources.

It is recommended for multiple calls to getUserMedia() from the same page to be allowed as a

way for pages to request multiple discrete video and/or audio streams.

Note also that if multiple getUserMedia() calls are done by a page, the order in which they

request resources, and the order in which they complete, is not constrained by this specification.

A single call to getUserMedia() will always return a stream with either zero or one audio tracks,

and either zero or one video tracks. If a script calls getUserMedia() multiple times before

reaching a stable state, this document advises the UI designer that the permission dialogs should

be merged, so that the user can give permission for the use of multiple cameras and/or media

sources in one dialog interaction. The constraints on each getUserMedia call can be used to

decide which stream gets which media sources.

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

67 of 98 27/01/2021, 07:47

Best Practice 4: Generating deviceIds

An efficient practice for generating a deviceId is to generate a cryptographic hash from a private

key + (origin or origin + top-level origin, based on the user agents' partitioning rules) + salt +

device's underlying (hardware) id in the driver, and present the resulting hash as an alphanumeric

string. Using 32 bits or fewer for the hash is recommended, but not much lower, to avoid risk of

collision.

A lower-entropy alternative, at the cost of storage, is to assign the numbers 0 through 255

randomly to each new device encountered for each origin or origin + top-level origin, based on

the User Agent's partitioning rules, retiring the number that hasn't been seen the longest if

numbers run out.

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

68 of 98 27/01/2021, 07:47

Best Practice 5: Device muting initiated by User Agent

A track sourced by a camera or microphone may be forcibly muted by a User Agent at any time,

in order to manage a user's privacy. However, doing so may create web compatibility issues, as

well as leak information about user activity, so caution is advised.

Best practice is to mute a camera or microphone track in the following instances:

An OS-level event for which the User Agent already suspends media playback globally, but

JavaScript is not suspended. The rationale is users may otherwise be surprised if capture

were to continue in this situation (unless they've intentionally configured it this way). If the

OS-level event already causes frames to stop coming in on the track, then no new

information of user activity is revealed by this. Even when this is not the case, revealing that

capture is ending seems like a reasonable privacy tradeoff compared to continuing capture in

situations that may surprise users.

A web page without focus re-enables a track when all tracks from that source are disabled,

in order to delay resumption of capture until the page gains focus.

Best practice is to unmute a camera or microphone track it previously muted, in the following

instances:

An OS-level event for which the User Agent already resumes media playback globally, and

the page is visible to the user (e.g. not during a lock screen). User Agents may defer such

action if it determines significant time has passed that may jeopardize a user's awareness of

the earlier capture session.

A web page gains focus and has one or more enabled tracks that are also muted.

The Constrainable pattern allows applications to inspect and adjust the properties of objects

implementing it (the constrainable object). It is broken out as a separate set of definitions so that it

can be referred to by other specifications. The core concept is the Capability, which consists of a

constrainable property of an object and the set of its possible values, which may be specified either as

a range or as an enumeration. For example, a camera might be capable of framerates (a property)

between 20 and 50 frames per second (a range) and may be able to be positioned (a property) facing

towards the user, away from the user, or to the left or right of the user (an enumerated set). The

application can examine a constrainable property's supported Capabilities via the getCapabilities()

11. Constrainable Pattern

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

69 of 98 27/01/2021, 07:47

accessor.

The application can select the (range of) values it wants for an object's Capabilities by means of basic

and/or advanced ConstraintSets and the applyConstraints() method. A ConstraintSet consists of the

names of one or more properties of the object plus the desired value (or a range of desired values) for

each property. Each of those property/value pairs can be considered to be an individual constraint. For

example, the application may set a ConstraintSet containing two constraints, the first stating that the

framerate of a camera be between 30 and 40 frames per second (a range) and the second that the

camera should be facing the user (a specific value). How the individual constraints interact depends on

whether and how they are given in the basic Constraint structure, which is a ConstraintSet with an

additional 'advanced' property, or whether they are in a ConstraintSet in the advanced list. The

behavior is as follows: all 'min', 'max', and 'exact' constraints in the basic Constraint structure are

together treated as the required constraints, and if it is not possible to satisfy simultaneously all of

those individual constraints for the indicated property names, the User Agent MUST reject the

returned promise. Otherwise, it must apply the required constraints. Next, it will consider any

ConstraintSets given in the advanced list, in the order in which they are specified, and will try to

satisfy/apply each complete ConstraintSet (i.e., all constraints in the ConstraintSet together), but will

skip a ConstraintSet if and only if it cannot satisfy/apply it in its entirety. Next, the User Agent MUST

attempt to apply, individually, any 'ideal' constraints or a constraint given as a bare value for the

property (referred to as optional basic constraints). Of these properties, it MUST satisfy the largest

number that it can, in any order. Finally, the User Agent MUST resolve the returned promise.

NOTE

Any constraint provided via this API will only be considered if the given

constrainable property is supported by the User Agent. JavaScript

application code is expected to first check, via getSupportedConstraints(),

that all the named properties that are used are supported by the User Agent.

The reason for this is that WebIDL drops any unsupported names from the

dictionary holding the constraints, so the User Agent does not see them and

the unsupported names end up being silently ignored. This will cause

confusing programming errors as the JavaScript code will be setting

constraints but the User Agent will be ignoring them. User Agents that

support (recognize) the name of a required constraint but cannot satisfy it

will generate an error, while User Agents that do not support the

constrainable property will not generate an error.

The following examples may help to understand how constraints work. The first shows a basic

Constraint structure. Three constraints are given, each of which the User Agent will attempt to satisfy

individually. Depending upon the resolutions available for this camera, it is possible that not all three

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

70 of 98 27/01/2021, 07:47

constraints can be satisfied at the same time. If so, the User Agent will satisfy two if it can, or only one

if not even two constraints can be satisfied together. Note that if not all three can be satisfied

simultaneously, it is possible that there is more than one combination of two constraints that could be

satisfied. If so, the User Agent will choose.

This next example adds a small bit of complexity. The ideal values are still given for width and height,

but this time with minimum requirements on each as well as a minimum frameRate that must be

satisfied. If it cannot satisfy the frameRate, width or height minimum it will reject the promise.

Otherwise, it will try to satisfy the width, height, and aspectRatio target values as well and then

resolve the promise.

This example illustrates the full control possible with the Constraints structure by adding the

'advanced' property. In this case, the User Agent behaves the same way with respect to the required

constraints, but before attempting to satisfy the ideal values it will process the 'advanced' list. In this

EXAMPLE 1

const supports = navigator.mediaDevices.getSupportedConstraints();

if (!supports.aspectRatio) {

// Treat like an error.

}

const constraints = {

width: 1280,

height: 720,

aspectRatio: 3/2

};

EXAMPLE 2

const supports = navigator.mediaDevices.getSupportedConstraints();

if (!supports.aspectRatio || !supports.frameRate) {

// Treat like an error.

}

const constraints = {

frameRate: {min: 20},

width: {min: 640, ideal: 1280},

height: {min: 480, ideal: 720},

aspectRatio: 3/2

};

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

71 of 98 27/01/2021, 07:47

example the 'advanced' list contains two ConstraintSets. The first specifies width and height

constraints, and the second specifies an aspectRatio constraint. Note that in the advanced list, these

bare values are treated as 'exact' values. This example represents the following: "I need my video to be

at least 640 pixels wide and at least 480 pixels high. My preference is for precisely 1920x1280, but if

you can't give me that, give me an aspectRatio of 4x3 if at all possible. If even that is not possible,

give me a resolution as close to 1280x720 as possible."

The ordering of advanced ConstraintSets is significant. In the preceding example it is impossible to

satisfy both the 1920x1280 ConstraintSet and the 4x3 aspect ratio ConstraintSet at the same time.

Since the 1920x1280 occurs first in the list, the User Agent will attempt to satisfy it first. Application

authors can therefore implement a backoff strategy by specifying multiple advanced ConstraintSets for

the same property. For example, an application might specify three advanced ConstraintSets, the first

asking for a frame rate greater than 500, the second asking for a frame rate greater than 400, and the

third asking for one greater than 300. If the User Agent is capable of setting a frame rate greater than

500, it will (and the subsequent two ConstraintSets will be trivially satisfied). However, if the User

Agent cannot set the frame rate above 500, it will skip that ConstraintSet and attempt to set the frame

rate above 400. If that fails, it will then try to set it above 300. If the User Agent cannot satisfy any of

the three ConstraintSets, it will set the frame rate to any value it can get. If the developers wanted to

insist on 300 as a lower bound, they could provide that as a 'min' value in the basic ConstraintSet. In

that case, the User Agent would fail altogether if it couldn't get a value over 300, but would choose a

value over 500 if possible, then try for a value over 400.

Note that, unlike basic constraints, the constraints within a ConstraintSet in the advanced list must be

satisfied together or skipped together. Thus, {width: 1920, height: 1280} is a request for that specific

resolution, not a request for that width or that height. One can think of the basic constraints as

EXAMPLE 3

const supports = navigator.mediaDevices.getSupportedConstraints();

if (!supports.width || !supports.height) {

// Treat like an error.

}

const constraints = {

width: {min: 640, ideal: 1280},

height: {min: 480, ideal: 720},

advanced: [

 {width: 1920, height: 1280},

 {aspectRatio: 4/3}

]

};

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

72 of 98 27/01/2021, 07:47

requesting an 'or' (non-exclusive) of the individual constraints, while each advanced ConstraintSet is

requesting an 'and' of the individual constraints in the ConstraintSet. An application may inspect the

full set of Constraints currently in effect via the getConstraints() accessor.

The specific value that the User Agent chooses for a constrainable property is referred to as a Setting.

For example, if the application applies a ConstraintSet specifying that the frameRate must be at least

30 frames per second, and no greater than 40, the Setting can be any intermediate value, e.g., 32, 35,

or 37 frames per second. The application can query the current settings of the object's constrainable

properties via the getSettings() accessor.

Although this specification formally defines ConstrainablePattern as a WebIDL interface, it is

actually a template or pattern for other interfaces and cannot be inherited directly since the return

values of the methods need to be extended, something WebIDL cannot do. Thus, each interface that

wishes to make use of the functionality defined here will have to provide its own copy of the WebIDL

for the functions and interfaces given here. However it can refer to the semantics defined here, which

will not change. See MediaStreamTrack Interface Definition for an example of this.

This pattern relies on the constrainable object defining three internal slots:

1. A [[Capabilities]] internal slot, initialized to a Capabilities dictionary describing the aggregate

allowable values for each constrainable property exposed, as explained under Capabilities, or an

empty dictionary if it has none.

2. A [[Constraints]] internal slot, initialized to an empty Constraints dictionary.

3. A [[Settings]] internal slot, initialized to a Settings dictionary describing the currently active

settings values for each constrainable property exposed, as explained under Settings, or an empty

dictionary if it has none.

11.1 Interface Definition

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

73 of 98 27/01/2021, 07:47

getCapabilities
The getCapabilities() method returns the dictionary of the names of the constrainable

properties that the object supports. When invoked, the User Agent MUST return the value of the

[[Capabilities]] internal slot.

NOTE

It is possible that the underlying hardware may not exactly map to the

range defined for the constrainable property. Where this is possible, the

entry SHOULD define how to translate and scale the hardware's setting

onto the values defined for the property. For example, suppose that a

hypothetical fluxCapacitance property ranges from -10 (min) to 10 (max),

but there are common hardware devices that support only values of

"off" "medium" and "full". The constrainable property definition might

specify that for such hardware, the User Agent should map the range

value of -10 to "off", 10 to "full", and 0 to "medium". It might also

indicate that given a ConstraintSet imposing a strict value of 3, the User

Agent should attempt to set the value of "medium" on the hardware, and

that getSettings() should return a fluxCapacitance of 0, since that is the

value defined as corresponding to "medium".

getConstraints

The getConstraints() method returns the Constraints that were the argument to the most recent

successful invocation of the ApplyConstraints algorithm on the object, maintaining the order in

Template:

WebIDL

[Exposed=Window]

interface ConstrainablePattern {

Capabilities getCapabilities();

Constraints getConstraints();

Settings getSettings();

Promise<undefined> applyConstraints(optional Constraints constraints =

{});

};

Methods

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

74 of 98 27/01/2021, 07:47

which they were specified. Note that some of the advanced ConstraintSets returned may not be

currently satisfied. To check which ConstraintSets are currently in effect, the application should

use getSettings. Instead of returning the exact constraints as described above, the UA MAY

return a constraint set that has the identical effect in all situations as the applied constraints.

When invoked, the User Agent MUST return the value of the [[Constraints]] internal slot.

getSettings
The getSettings() method returns the current settings of all the constrainable properties of the

object, whether they are platform defaults or have been set by the ApplyConstraints algorithm.

Note that a setting is a target value that complies with constraints, and therefore may differ from

measured performance at times. When invoked, the User Agent MUST return the value of the

[[Settings]] internal slot.

applyConstraints
When the applyConstraints template method is invoked, the User Agent MUST run the

following steps:

1. Let be the object on which this method was invoked.

2. Let be the argument to this method.

3. Let be a new promise.

4. Run the following steps in parallel, maintaining the order of invocations if this method is

called multiple times:

1. Let be the result of running the ApplyConstraints algorithm with

 as the argument.

2. Let be the 's current settings after the algorithm in the above

step has finished.

3. Queue a task that runs the following steps:

1. If is not undefined, let be either undefined or an

informative human-readable message, reject with a new

OverconstrainedError created by calling

OverconstrainedError(,), and abort these steps.

The existing constraints remain in effect in this case.

2. Set 's [[Constraints]] internal slot to or a Constraints

dictionary that has the identical effect in all situations as .

object

newConstraints

p

failedConstraint

newConstraints

successfulSettings object

failedConstraint message

p

failedConstraint message

object newConstraints

newConstraints

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

75 of 98 27/01/2021, 07:47

3. Set 's [[Settings]] internal slot to .

4. resolve with undefined.

5. Return .

The ApplyConstraints algorithm for applying constraints is stated below. Here are some

preliminary definitions that are used in the statement of the algorithm:

We use the term settings dictionary for the set of values that might be applied as settings to the

object.

For string valued constraints, we define "==" below to be true if one of the values in the sequence

is exactly the same as the value being compared against.

We define the fitness distance between a settings dictionary and a constraint set as the sum,

for each member (represented by a and pair) which exists in ,

of the following values:

1. If is not supported by the User Agent, the fitness distance is 0.

2. If the constraint is required (either contains one or more members named

'min', 'max', or 'exact', or is itself a bare value and bare values are to be treated as 'exact'),

and the settings dictionary's value for the constraint does not satisfy the constraint, the

fitness distance is positive infinity.

3. If the constraint is not required, and does not apply for this type of device, the fitness

distance is 0 (that is, the constraint does not influence the fitness distance).

4. If no ideal value is specified (either contains no member named 'ideal', or, if

bare values are to be treated as 'ideal', isn't a bare value), the fitness distance is 0.

5. For all positive numeric constraints (such as height, width, frameRate, aspectRatio,

sampleRate and sampleSize), the fitness distance is the result of the formula

(actual == ideal) ? 0 : |actual - ideal| / max(|actual|, |ideal|)

6. For all string, enum and boolean constraints (e.g. deviceId, groupId, facingMode,

resizeMode, echoCancellation), the fitness distance is the result of the formula

(actual == ideal) ? 0 : 1

More definitions:

object successfulSettings

p

p

CS

constraintName constraintValue CS

constraintName

constraintValue

constraintValue

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

76 of 98 27/01/2021, 07:47

We refer to each element of a ConstraintSet (other than the special term 'advanced') as a

'constraint' since it is intended to constrain the acceptable settings for the given property

from the full list or range given in the corresponding Capability of the ConstrainablePattern

object to a value that is within the range or list of values it specifies.

We refer to the "effective Capability" C of an object O as the possibly proper subset of the

possible values of C (as returned by getCapabilities) taking into consideration environmental

limitations and/or restrictions placed by other constraints. For example given a ConstraintSet

that constrains the aspectRatio, height, and width properties, the values assigned to any two

of the properties limit the effective Capability of the third. The set of effective Capabilities

may be platform dependent. For example, on a resource-limited device it may not be

possible to set properties P1 and P2 both to 'high', while on another less limited device, this

may be possible.

A settings dictionary, which is a set of values for the constrainable properties of an object O,

satisfies ConstraintSet CS if the fitness distance between the set and CS is less than infinity.

A set of ConstraintSets CS1...CSn (n >= 1) can be satisfied by an object O if it is possible to

find a settings dictionary of O that satisfies CS1...CSn simultaneously.

To apply a set of ConstraintSets CS1...CSn to object O is to choose such a sequence of

values that satisfy CS1...CSn and assign them as the settings for the properties of O.

We define the SelectSettings algorithm as follows:

1. Each constraint specifies one or more values (or a range of values) for its property. A

property MAY appear more than once in the list of 'advanced' ConstraintSets. If an empty list

has been given as the value for a constraint, it MUST be interpreted as if the constraint were

not specified (in other words, an empty constraint == no constraint).

Note that unknown properties are discarded by WebIDL, which means that

unknown/unsupported required constraints will silently disappear. To avoid this being a

surprise, application authors are expected to first use the getSupportedConstraints()

method as shown in the Examples below.

2. Let be the ConstrainablePattern object on which this algorithm is applied. Let

 be an unconstrained copy of (i.e., should behave as if it were with

all ConstraintSets removed.)

3. For every possible settings dictionary of compute its fitness distance, treating bare

values of properties as ideal values. Let be the set of settings dictionaries for

which the fitness distance is finite.

4. If is empty, return undefined as the result of the SelectSettings algorithm.

object

copy object copy object

copy

candidates

candidates

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

77 of 98 27/01/2021, 07:47

5. Iterate over the 'advanced' ConstraintSets in in the order in which they were

specified. For each ConstraintSet:

1. compute the fitness distance between it and each settings dictionary in ,

treating bare values of properties as exact.

2. If the fitness distance is finite for one or more settings dictionaries in , keep

those settings dictionaries in , discarding others.

If the fitness distance is infinite for all settings dictionaries in , ignore this

ConstraintSet.

6. Select one settings dictionary from , and return it as the result of the

SelectSettings algorithm. The UA SHOULD use the one with the smallest fitness distance,

as calculated in step 3, but MAY prefer ones with resizeMode set to "none" over "crop-

and-scale".

To apply the ApplyConstraints algorithm to an , given as an argument,

the User Agent MUST run the following steps:

1. Let be the result of running the SelectSettings algorithm with

 as the constraint set.

2. If is undefined, let be any required constraint whose

fitness distance was infinity for all settings dictionaries examined while executing the

SelectSettings algorithm, or "" if there isn't one, and then return and abort

these steps.

3. In a single operation, remove the existing constraints from , apply ,

and apply as the current settings.

4. Return undefined.

NOTE

Any implementation that has the same result as the algorithm above is

an allowed implementation. For instance, the implementation may

choose to keep track of the maximum and minimum values for a setting

that are OK under the constraints considered, rather than keeping track

of all possible values for the setting.

newConstraints

candidates

candidates

candidates

candidates

candidates

object newConstraints

successfulSettings

newConstraints

successfulSettings failedConstraint

failedConstraint

object newConstraints

successfulSettings

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

78 of 98 27/01/2021, 07:47

NOTE

When picking a settings dictionary, the UA can use any information

available to it. Examples of such information may be whether the

selection is done as part of device selection in getUserMedia, whether

the energy usage of the camera varies between the settings dictionaries,

or whether using a settings dictionary will cause the device driver to

apply resampling.

The User Agent MAY choose new settings for the constrainable properties of the object at any

time. When it does so it MUST attempt to satisfy all current Constraints, in the manner described

in the algorithm above, let be the resulting new settings, and queue a task to

run the following steps:

1. Let be the ConstrainablePattern object on which new settings for one or more

constrainable properties have changed.

2. Set 's [[Settings]] internal slot to .

An example of Constraints that could be passed into applyConstraints() or returned as a value of

constraints is below. It uses the constrainable properties defined for MediaStreamTrack.

Here is another example, specifically for a video track where I must have a particular camera and have

successfulSettings

object

object successfulSettings

EXAMPLE 4

const supports = navigator.mediaDevices.getSupportedConstraints();

if (!supports.facingMode) {

// Treat like an error.

}

const constraints = {

width: {min: 640},

height: {min: 480},

advanced: [

 {width: 650},

 {width: {min: 650}},

 {frameRate: 60},

 {width: {max: 800}},

 {facingMode: 'user'}

]

};

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

79 of 98 27/01/2021, 07:47

separate preferences for the width and height:

And here's one for an audio track:

Here's an example of use of ideal:

EXAMPLE 5

const supports = navigator.mediaDevices.getSupportedConstraints();

if (!supports.deviceId) {

// Treat like an error.

}

const constraints = {

deviceId: {exact: '20983-20o198-109283-098-09812'},

advanced: [

 {width: {min: 800, max: 1200}},

 {height: {min: 600}}

]

};

EXAMPLE 6

const supports = navigator.mediaDevices.getSupportedConstraints();

if (!supports.deviceId || !supports.channelCount) {

// Treat like an error.

}

const constraints = {

advanced: [

 {deviceId: '64815-wi3c89-1839dk-x82-392aa'},

 {channelCount: 2}

]

};

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

80 of 98 27/01/2021, 07:47

Here's an example of "I want 720p, but I can accept up to 1080p and down to VGA.":

Here's an example of "I want a front-facing camera and it must be VGA.":

EXAMPLE 7

async function useIdeal() {

const supports = navigator.mediaDevices.getSupportedConstraints();

if (!supports.aspectRatio || !supports.facingMode) {

// Treat like an error.

 }

const stream = await navigator.mediaDevices.getUserMedia({

video: {

width: {min: 320, ideal: 1280, max: 1920},

height: {min: 240, ideal: 720, max: 1080},

frameRate: 30, // Shorthand for ideal.

facingMode: {

exact: 'environment'

// facingMode: "environment" would be optional.

 }

 }

 });

}

EXAMPLE 8

async function constrainVideo() {

const supports = navigator.mediaDevices.getSupportedConstraints();

if (!supports.width || !supports.height) {

// Treat like an error.

 }

const stream = await navigator.mediaDevices.getUserMedia({

video: {

width: {min: 640, ideal: 1280, max: 1920},

height: {min: 480, ideal: 720, max: 1080},

 }

 });

}

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

81 of 98 27/01/2021, 07:47

The syntax for the specification of the set of legal values depends on the type of the values. In addition

to the standard atomic types (boolean, long, double, DOMString), legal values include lists of any of

the atomic types, plus min-max ranges, as defined below.

List values MUST be interpreted as disjunctions. For example, if a property 'facingMode' for a camera

is defined as having legal values ["left", "right", "user", "environment"], this means that 'facingMode'

can have the values "left", "right", "environment", and "user". Similarly Constraints restricting

'facingMode' to ["user", "left", "right"] would mean that the User Agent should select a camera (or

point the camera, if that is possible) so that "facingMode" is either "user", "left", or "right". This

Constraint would thus request that the camera not be facing away from the user, but would allow the

User Agent to allow the user to choose other directions.

EXAMPLE 9

async function specifyCamera() {

const supports = navigator.mediaDevices.getSupportedConstraints();

if (!supports.width || !supports.height || !supports.facingMode) {

// Treat like an error.

 }

const stream = await navigator.mediaDevices.getUserMedia({

video: {

facingMode: {exact: 'user'},

width: {exact: 640},

height: {exact: 480}

 }

 });

}

11.2 Types for Constrainable Properties

WebIDL

dictionary DoubleRange {

double max;

double min;

};

Dictionary DoubleRange Members

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

82 of 98 27/01/2021, 07:47

max of type double
The maximum legal value of this property.

min of type double
The minimum value of this Property.

exact of type double
The exact required value for this property.

ideal of type double
The ideal (target) value for this property.

max of type unsigned long
The maximum legal value of this property.

min of type unsigned long
The minimum value of this property.

WebIDL

dictionary ConstrainDoubleRange : DoubleRange {

double exact;

double ideal;

};

Dictionary ConstrainDoubleRange Members

WebIDL

dictionary ULongRange {

 [Clamp] unsigned long max;

 [Clamp] unsigned long min;

};

Dictionary ULongRange Members

WebIDL

dictionary ConstrainULongRange : ULongRange {

 [Clamp] unsigned long exact;

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

83 of 98 27/01/2021, 07:47

exact of type unsigned long
The exact required value for this property.

ideal of type unsigned long
The ideal (target) value for this property.

exact of type boolean
The exact required value for this property.

ideal of type boolean
The ideal (target) value for this property.

exact of type (DOMString or sequence<DOMString>)
The exact required value for this property.

ideal of type (DOMString or sequence<DOMString>)

 [Clamp] unsigned long ideal;

};

Dictionary ConstrainULongRange Members

WebIDL

dictionary ConstrainBooleanParameters {

boolean exact;

boolean ideal;

};

Dictionary ConstrainBooleanParameters Members

WebIDL

dictionary ConstrainDOMStringParameters {

 (DOMString or sequence<DOMString>) exact;

 (DOMString or sequence<DOMString>) ideal;

};

Dictionary ConstrainDOMStringParameters Members

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

84 of 98 27/01/2021, 07:47

The ideal (target) value for this property.

Throughout this specification, the identifier ConstrainULong is used to refer to the ([Clamp] unsigned

long or ConstrainULongRange) type.

Throughout this specification, the identifier ConstrainDouble is used to refer to the (double or

ConstrainDoubleRange) type.

Throughout this specification, the identifier ConstrainBoolean is used to refer to the (boolean or

ConstrainBooleanParameters) type.

Throughout this specification, the identifier ConstrainDOMString is used to refer to the (DOMString

or sequence<DOMString> or ConstrainDOMStringParameters) type.

Capabilities is a dictionary containing one or more key-value pairs, where each key MUST be a

constrainable property, and each value MUST be a subset of the set of values allowed for that property.

The exact syntax of the value expression depends on the type of the property. The Capabilities

dictionary specifies which constrainable properties that can be applied, as constraints, to the

constrainable object. Note that the Capabilities of a constrainable object MAY be a subset of the

WebIDL

typedef ([Clamp] unsigned long or ConstrainULongRange) ConstrainULong;

WebIDL

typedef (double or ConstrainDoubleRange) ConstrainDouble;

WebIDL

typedef (boolean or ConstrainBooleanParameters) ConstrainBoolean;

WebIDL

typedef (DOMString or

sequence<DOMString> or

ConstrainDOMStringParameters) ConstrainDOMString;

11.3 Capabilities

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

85 of 98 27/01/2021, 07:47

properties defined in the Web platform, with a subset of the set values for those properties. Note that

Capabilities are returned from the User Agent to the application, and cannot be specified by the

application. However, the application can control the Settings that the User Agent chooses for

constrainable properties by means of Constraints.

An example of a Capabilities dictionary is shown below. In this case, the constrainable object is a

video source with a very limited set of Capabilities.

The next example below points out that capabilities for range values provide ranges for individual

constrainable properties, not combinations. This is particularly relevant for video width and height,

since the ranges for width and height are reported separately. In the example, if the constrainable

object can only provide 640x480 and 800x600 resolutions the relevant capabilities returned would be:

Note in the example above that the aspectRatio would make clear that arbitrary combination of widths

and heights are not possible, although it would still suggest that more than two resolutions were

available.

A specification using the Constrainable Pattern should not subclass the below dictionary, but instead

provide its own definition. See MediaTrackCapabilities for an example.

EXAMPLE 10

{

frameRate: {min: 1.0, max: 60.0},

facingMode: ['user', 'left']

}

EXAMPLE 11

{

 width: {min: 640, max: 800},

 height: {min: 480, max: 600},

 aspectRatio: 4/3

}

WebIDL

dictionary Capabilities {};

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

86 of 98 27/01/2021, 07:47

Settings is a dictionary containing one or more key-value pairs. It MUST contain each key returned

in getCapabilities() for which the property is defined on the object type it's returned on; for

instance, an audio MediaStreamTrack has no "width" property. There MUST be a single value for

each key and the value MUST be a member of the set defined for that property by

getCapabilities(). The Settings dictionary contains the actual values that the User Agent has

chosen for the object's constrainable properties. The exact syntax of the value depends on the type of

the property.

A conforming User Agent MUST support all the constrainable properties defined in this specification.

An example of a Settings dictionary is shown below. This example is not very realistic in that a User

Agent would actually be required to support more constrainable properties than just these.

A specification using the Constrainable Pattern should not subclass the below dictionary, but instead

provide its own definition. See MediaTrackSettings for an example.

Due to the limitations of WebIDL, interfaces implementing the Constrainable Pattern cannot simply

subclass Constraints and ConstraintSet as they are defined here. Instead they must provide their own

definitions that follow this pattern. See MediaTrackConstraints for an example of this.

11.4 Settings

EXAMPLE 12

{

frameRate: 30.0,

 facingMode: 'user'

}

WebIDL

dictionary Settings {};

11.5 Constraints and ConstraintSet

WebIDL

dictionary ConstraintSet {};

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

87 of 98 27/01/2021, 07:47

Each member of a ConstraintSet corresponds to a constrainable property and specifies a subset of

the property's legal Capability values. Applying a ConstraintSet instructs the User Agent to restrict the

settings of the corresponding constrainable properties to the specified values or ranges of values. A

given property MAY occur both in the basic Constraints set and in the advanced ConstraintSets list,

and MAY occur at most once in each ConstraintSet in the advanced list.

advanced of type sequence<ConstraintSet>
This is the list of ConstraintSets that the User Agent MUST attempt to satisfy, in order, skipping

only those that cannot be satisfied. The order of these ConstraintSets is significant. In particular,

when they are passed as an argument to applyConstraints, the User Agent MUST try to satisfy

them in the order that is specified. Thus if advanced ConstraintSets C1 and C2 can be satisfied

individually, but not together, then whichever of C1 and C2 is first in this list will be satisfied,

and the other will not. The User Agent MUST attempt to satisfy all ConstraintSets in the list, even

if some cannot be satisfied. Thus, in the preceding example, if constraint C3 is specified after C1

and C2, the User Agent will attempt to satisfy C3 even though C2 cannot be satisfied. Note that a

given property name may occur only once in each ConstraintSet but may occur in more than one

ConstraintSet.

This sample code exposes a button. When clicked, the button is disabled and the user is prompted to

offer a stream. The user can cause the button to be re-enabled by providing a stream (e.g., giving the

page access to the local camera) and then disabling the stream (e.g., revoking that access).

WebIDL

dictionary Constraints : ConstraintSet {

sequence<ConstraintSet> advanced;

};

Dictionary Constraints Members

12. Examples

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

88 of 98 27/01/2021, 07:47

This example allows people to take photos of themselves from the local video camera. Note that the

Image Capture specification [image-capture] provides a simpler way to accomplish this.

EXAMPLE 13

<button id="startBtn">Start</button>

<script>

const startBtn = document.getElementById('startBtn');

startBtn.onclick = async () => {

try {

 startBtn.disabled = true;

const constraints = {

audio: true,

video: true

 };

const stream = await navigator.mediaDevices.getUserMedia(constraints);

for (let track of stream.getTracks()) {

 track.onended = () => {

 startBtn.disabled = stream.getTracks().some((t) => t.readyState ==

'live');

 };

 }

 } catch (err) {

console.error(err);

 }

};

</script>

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

89 of 98 27/01/2021, 07:47

EXAMPLE 14

<script>

window.onload = async () => {

const video = document.getElementById('monitor');

const canvas = document.getElementById('photo');

const shutter = document.getElementById('shutter');

try {

 video.srcObject = await navigator.mediaDevices.getUserMedia({video:

true});

await new Promise((resolve) => video.onloadedmetadata = resolve);

 canvas.width = video.videoWidth;

 canvas.height = video.videoHeight;

document.getElementById('splash').hidden = true;

document.getElementById('app').hidden = false;

 shutter.onclick = () => canvas.getContext('2d').drawImage(video, 0,

0);

 } catch (err) {

console.error(err);

 }

};

</script>

<h1>Snapshot Kiosk</h1>

<section id="splash">

<p id="errorMessage">Loading...</p>

</section>

<section id="app" hidden>

<video id="monitor" autoplay></video>

<button id="shutter">📷</button>

<canvas id="photo"></canvas>

</section>

13. Permissions Policy Integration

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

90 of 98 27/01/2021, 07:47

This specification defines two policy-controlled features identified by the strings "camera" and

"microphone". Both have a default allowlist of "self".

NOTE

A document's permissions policy determines whether any content in that

document is allowed to use getUserMedia to request camera or microphone

respectively. If disabled in any document, no content in the document will be

allowed to use getUserMedia to request the camera or microphone

respectively. This is enforced by the request permission to use algorithm.

Additionally, enumerateDevices will only enumerate devices the document is

allowed to use.

For each of device that getUserMedia() exposes,

Define (e.g. ,) as the logical OR of

the [[kindsAccessibleMap]] value and all the [[devicesAccessibleMap]] values

for devices of that kind.

Define any (e.g. ,) to be the logical OR of the

[[kindsAccessibleMap]] value and all the [[devicesLiveMap]] values for devices

of that kind.

Define to be the logical OR of all values.

Define to be the logical OR of all values.

Then the following are requirements on the User Agent:

The User Agent MUST indicate to the user when the value of changes.

The User Agent MUST indicate to the user when the value of changes.

If the User Agent provides indication to the user per , then for each

value and value, it MUST at minimum indicate when the value changes.

If the User Agent provides indication to the user per , then for each

[[devicesAccessibleMap]] value and [[devicesLiveMap]] value, it MUST at

minimum indicate when the value changes.

Any false-to-true transition indicated MUST remain observable for a sufficient time that a

14. Privacy Indicator Requirements

kind

any<kind>Accessible anyAudioAccessible anyVideoAccessible

[kind] [deviceId]

<kind>Live anyAudioLive anyVideoLive

[kind] [deviceId]

anyAccessible any<kind>Accessible

anyLive any<kind>Live

anyAccessible

anyLive

kind any<kind>Accessible

any<kind>Live

device

[deviceId] [deviceId]

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

91 of 98 27/01/2021, 07:47

reasonably-observant user could become aware of it. This SHOULD be at least 3 seconds.

Any of the above transition indications MAY be combined as long as the combined indication

cannot transition to false if any of its component indications are still true.

and the following are encouraged behaviors for the User Agent:

The User Agent is encouraged to provide ongoing indication of the current state of

.

The User Agent is encouraged to provide ongoing indication of the current state of and

to make any generic hardware device indicator light match.

If the User Agent provides indication to the user per , then for each any

value and any value, it is encouraged to provide ongoing indication of the current

state of the value. It is also encouraged to make any device-type-specific hardware indicator light

match the corresponding any value.

If the User Agent provides indication to the user per , then for each

[[devicesAccessibleMap]] value and [[devicesLiveMap]] value, it is

encouraged to provide ongoing indication of the current state of the value. It is also encouraged

to make any device-specific hardware indicator light match the corresponding

[[devicesLiveMap]] value.

Any of the above ongoing indications MAY be used instead of the corresponding required

transition indication provided the false-to-true transition requirement is met.

This section is non-normative; it specifies no new behavior, but instead summarizes information

already present in other parts of the specification.

This document extends the Web platform with the ability to manage input devices for media - in this

iteration, microphones, and cameras. It also allows the manipulation of audio output devices (speakers

and headphones). Capturing audio and video exposes personally-identifiable information to

applications, and this specification requires obtaining explicit user consent before sharing it.

Without authorization (to the "drive-by web"), it offers the ability to tell how many devices there are

of each class, and how they are grouped together (e.g. a microphone and camera belonging to a single

Web cam). The identifiers for the devices are designed to not be useful for a fingerprint that can track

the user between origins, but the number and grouping of devices adds to the fingerprint surface. It

recommends to treat the per-origin persistent identifier deviceId as other persistent storage (e.g.

cookies) are treated.

anyAccessible

anyLive

kind <kind>Accessible

<kind>Live

<kind>Live

device

[deviceId] [deviceId]

[deviceId]

15. Privacy and Security Considerations

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

92 of 98 27/01/2021, 07:47

When authorization is given, this document describes how to get access to, and use, media data from

the devices mentioned. This data may be sensitive; advice is given that indicators should be supplied

to indicate that devices are in use, but both the nature of authorization and the indicators of in-use

devices are platform decisions.

Authorization may be given on a case-by-case basis, or be persistent. In the case of a case-by-case

authorization, it is important that the user be able to say "no" in a way that prevents the UI from

blocking user interaction until permission is given - either by offering a way to say a "persistent NO"

or by not using a modal permissions dialog.

When authorization to any media device is given, application developers gain access to the labels of

all available media capture devices. In most cases, the labels are persistent across browsing sessions

and across origins that have also been granted authorization, and thus potentially provide a way to

track a given device across time and origins.

For origins to which permission has been granted, the devicechange event will be emitted across

browsing contexts and origins each time a new media device is added or removed; user agents can

mitigate the risk of correlation of browsing activity across origins by fuzzing the timing of these

events.

Once a developer gains access to a media stream from a capture device, the developer also gains

access to detailed information about the device, including its range of operating capabilities (e.g.

available resolutions for a camera). These operating capabilities are for the most part persistent across

browsing sessions and origins, and thus provide a way to track a given device across time and origins.

Once access to a video stream from a capture device is obtained, that stream can most likely be used to

fingerprint uniquely the said device (e.g. via dead pixel detection). Similarly, once access to an audio

stream is obtained, that stream can most likely be used to fingerprint user location down to the level of

a room or even simultaneous occupation of a room by disparate users (e.g. via analysis of ambient

audio or of unique audio purposely played out of the device speaker). User-level mitigation for both

audio and video consists of covering up the camera and/or microphone or revoking permission via

User Agent chrome controls.

It is possible to use constraints so that the failure of a getUserMedia call will return information about

devices on the system without prompting the user, which increases the surface available for

fingerprinting. The User Agent should consider limiting the rate at which failed getUserMedia calls

are allowed in order to limit this additional surface.

In the case of persistent authorization via a stored permission, it is important that it is easy to find the

list of granted permissions and revoke permissions that the user wishes to revoke.

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

93 of 98 27/01/2021, 07:47

Once permission has been granted, the User Agent should make two things readily apparent to the

user:

That the page has access to the devices for which permission is given

Whether or not any of the devices are presently recording ("on air") indicator

NOTE

Developers of sites with stored permissions should be careful that these

permissions not be abused. These permissions can be revoked using the

[permissions] API.

In particular, they should not make it possible to automatically send audio or

video streams from authorized media devices to an end point that a third

party can select.

Indeed, if a site offered URLs such as https://webrtc.example.org/?call=

that would automatically set up calls and transmit audio/video to , it

would be open for instance to the following abuse:

Users who have granted stored permissions to https://webrtc.example.org/

could be tricked to send their audio/video streams to an attacker EvilSpy by

following a link or being redirected to https://webrtc.example.org

/?user=EvilSpy.

This section is non-normative.

Although new versions of this specification may be produced in the future, it is also expected that

other standards will need to define new capabilities that build upon those in this specification. The

purpose of this section is to provide guidance to creators of such extensions.

Any WebIDL-defined interfaces, methods, or attributes in the specification may be extended. Two

likely extension points are defining a new media type and defining a new constrainable property.

At a minimum, defining a new media type would require

user

user

16. Extensibility

16.1 Defining a new media type (beyond the existing Audio and Video types)

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

94 of 98 27/01/2021, 07:47

adding a new getXXXXTracks() method for the type to the MediaStream interface,

describing what a muted or disabled track of that type will render (see § 4.3.1 Life-cycle and

Media Flow),

adding the new type as an additional legal value for the kind attribute on the MediaStreamTrack

interface,

defining any constrainable properties (see § 4.3.8 Constrainable Properties) that are applicable to

the media type,

updating how the HTMLMediaElement works with a MediaStream containing a track of the new

media type (see § 6. MediaStreams in Media Elements), including adding a corollary to

audible/inaudible for the new media type,

updating MediaDeviceKind if the new type has enumerable devices,

updating the getCapabilities() and getUserMedia() descriptions,

adding the new type to the MediaStreamConstraints dictionary,

describing any new security and/or privacy considerations (see § 15. Privacy and Security

Considerations) introduced by the new type, and

if the new type requires user authorization, defining new permissions for it, including a new

PermissionDescriptor name associated with the new kind, and defining how these permissions,

along with access starting and ending, as well as muting/disabling, affect any new and/or existing

"on-air" and "device accessible" indicator states (see MediaDevices).

Additionally, it should include updating

the source definition,

the list of media stream consumers,

the description of the label attribute on the MediaStreamTrack interface,

the list of sinks (see § 5. The model: sources, sinks, constraints, and settings), and

the best practice statements referring to video and audio (see § 10.6 Implementation

Suggestions).

It might also include

explaining how the media is expected to be used by potential consumers, and

giving examples in MediaStreamTrackState of how such a track might become ended.

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

95 of 98 27/01/2021, 07:47

This will require thinking through and defining how Constraints, Capabilities, and Settings for the

property (see § 3. Terminology) will work. The relevant text in MediaTrackSupportedConstraints,

MediaTrackCapabilities, MediaTrackConstraints, MediaTrackSettings, § 4.3.8 Constrainable

Properties, and MediaStreamConstraints are the model to use.

Creators of extension specifications are strongly encouraged to notify the specification maintainers on

the specification repository.

Future versions of this specification and others created by the WebRTC Working Group will take into

consideration all extensions they are aware of in an attempt to reduce potential usage conflicts.

It is also likely that new consumers of MediaStreams or MediaStreamTracks will be defined in the

future. The following section provides guidance.

At a minimum, any new consumer of a MediaStreamTrack will need to define

how a MediaStreamTrack will render in the various states in which it can be, including muted

and disabled (see § 4.3.1 Life-cycle and Media Flow).

The editors wish to thank the Working Group chairs and Team Contact, Harald Alvestrand, Stefan

Håkansson, Erik Lagerway and Dominique Hazaël-Massieux, for their support. Substantial text in this

specification was provided by many people including Jim Barnett, Harald Alvestrand, Travis Leithead,

Josh Soref, Martin Thomson, Jan-Ivar Bruaroey, Peter Thatcher, Dominique Hazaël-Massieux, and

Stefan Håkansson. Dan Burnett would like to acknowledge the significant support received from

Voxeo and Aspect during the development of this specification.

16.2 Defining a new constrainable property

16.3 Defining new consumers of MediaStreams and MediaStreamTracks

A. Acknowledgements

B. References

B.1 Normative references

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

96 of 98 27/01/2021, 07:47

[COOKIES]
HTTP State Management Mechanism. A. Barth. IETF. April 2011. Proposed Standard. URL:

https://httpwg.org/specs/rfc6265.html

[DOM]
DOM Standard. Anne van Kesteren. WHATWG. Living Standard. URL:

https://dom.spec.whatwg.org/

[ECMA-262]
ECMAScript Language Specification. Ecma International. URL: https://tc39.es/ecma262/

[HTML]
HTML Standard. Anne van Kesteren; Domenic Denicola; Ian Hickson; Philip Jägenstedt; Simon

Pieters. WHATWG. Living Standard. URL: https://html.spec.whatwg.org/multipage/

[infra]
Infra Standard. Anne van Kesteren; Domenic Denicola. WHATWG. Living Standard. URL:

https://infra.spec.whatwg.org/

[permissions]
Permissions. Mounir Lamouri; Marcos Caceres; Jeffrey Yasskin. W3C. 20 July 2020. W3C

Working Draft. URL: https://www.w3.org/TR/permissions/

[permissions-policy]
Permissions Policy. Ian Clelland. W3C. 16 July 2020. W3C Working Draft. URL:

https://www.w3.org/TR/permissions-policy-1/

[RFC2119]
Key words for use in RFCs to Indicate Requirement Levels. S. Bradner. IETF. March 1997. Best

Current Practice. URL: https://tools.ietf.org/html/rfc2119

[rfc4122]
A Universally Unique IDentifier (UUID) URN Namespace. P. Leach; M. Mealling; R. Salz. IETF.

July 2005. Proposed Standard. URL: https://tools.ietf.org/html/rfc4122

[RFC8174]
Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words. B. Leiba. IETF. May 2017. Best

Current Practice. URL: https://tools.ietf.org/html/rfc8174

[WEBAUDIO]
Web Audio API. Paul Adenot; Hongchan Choi. W3C. 14 January 2021. W3C Candidate

Recommendation. URL: https://www.w3.org/TR/webaudio/

[WEBIDL]
Web IDL. Boris Zbarsky. W3C. 15 December 2016. W3C Editor's Draft. URL:

https://heycam.github.io/webidl/

[WEBRTC]
WebRTC 1.0: Real-Time Communication Between Browsers. Cullen Jennings; Henrik Boström;

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

97 of 98 27/01/2021, 07:47

Jan-Ivar Bruaroey. W3C. 26 January 2021. W3C Recommendation. URL: https://www.w3.org

/TR/webrtc/

[image-capture]
"MediaStream Image Capture". Giridhar Mandyam; Miguel Casas-sanchez. W3C. 21 June 2017.

W3C Working Draft. URL: https://www.w3.org/TR/image-capture/

[mediacapture-fromelement]
Media Capture from DOM Elements. Martin Thomson; Miguel Casas-sanchez; Emircan Uysaler.

W3C. 19 January 2021. W3C Working Draft. URL: https://www.w3.org/TR/mediacapture-

fromelement/

[mediastream-recording]
MediaStream Recording. Miguel Casas-sanchez. W3C. 1 December 2020. W3C Working Draft.

URL: https://www.w3.org/TR/mediastream-recording/

↑

B.2 Informative references

Media Capture and Streams https://w3c.github.io/mediacapture-main/getusermedia.html

98 of 98 27/01/2021, 07:47

