
HTML Media Capture
W3C Recommendation 01 February 2018

This version:
https://www.w3.org/TR/2018/REC-html-media-capture-20180201/

Latest published version:
https://www.w3.org/TR/html-media-capture/

Latest editor's draft:
https://w3c.github.io/html-media-capture/

Test suite:
https://w3c-test.org/html-media-capture/

Implementation report:
https://www.w3.org/2009/dap/wiki/ImplementationStatus

Previous version:
https://www.w3.org/TR/2017/PR-html-media-capture-20171128/

Editors:
Anssi Kostiainen, Intel

Ilkka Oksanen, Nokia (until May 10, 2012)

Dominique Hazaël-Massieux, W3C (until May 10, 2012)

Translations:
ру́сский язы́к

한국어
日本語

Participate:
public-device-apis@w3.org

GitHub w3c/html-media-capture

GitHub w3c/html-media-capture/issues

GitHub w3c/html-media-capture/commits

Please check the errata for any errors or issues reported since publication.

The English version of this specification is the only normative version. Non-normative translations

may also be available.

Copyright © 2018 W3C® (MIT, ERCIM, Keio, Beihang). W3C liability, trademark and permissive document license rules

apply.

HTML Media Capture https://www.w3.org/TR/2018/REC-html-media-capture-20180201/

1 of 11 30/06/2020, 15:38

Abstract

The HTML Media Capture specification defines an HTML form extension that facilitates user access

to a device's media capture mechanism, such as a camera, or microphone, from within a file upload

control.

Status of This Document

Status Update (April 2018): This paragraph is informative. The specification was updated in-

place to include links to translations and to incorporate the existing errata, which only contains a

non-normative change.

This section describes the status of this document at the time of its publication. Other documents may

supersede this document. A list of current W3C publications and the latest revision of this technical

report can be found in the W3C technical reports index at https://www.w3.org/TR/.

An HTML Media Capture Proposed Recommendation was published on 28 November 2017, no

further normative changes have been made since then. Errata for this document are recorded as issues.

The implementation report produced for this version demonstrates there are two independent

interoperable implementations.

This document was published by the Device and Sensors Working Group as a Recommendation.

Comments regarding this document are welcome. Please send them to public-device-apis@w3.org

(subscribe, archives) or file an issue on GitHub.

Please see the Working Group's implementation report.

This document has been reviewed by W3C Members, by software developers, and by other W3C

groups and interested parties, and is endorsed by the Director as a W3C Recommendation. It is a

stable document and may be used as reference material or cited from another document. W3C's role in

making the Recommendation is to draw attention to the specification and to promote its widespread

deployment. This enhances the functionality and interoperability of the Web.

This document was produced by a group operating under the W3C Patent Policy. W3C maintains a

public list of any patent disclosures made in connection with the deliverables of the group; that page

also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent

which the individual believes contains Essential Claim(s) must disclose the information in accordance

HTML Media Capture https://www.w3.org/TR/2018/REC-html-media-capture-20180201/

2 of 11 30/06/2020, 15:38

1.

2.

3.

4.

5.

A.

B.

B.1

B.2

with section 6 of the W3C Patent Policy.

This document is governed by the 1 March 2017 W3C Process Document.

Table of Contents

Introduction

Conformance

Terminology

Security and privacy considerations

The capture attribute

Examples

References

Normative references

Informative references

1. Introduction

This section is non-normative.

The HTML Media Capture specification extends the HTMLInputElement interface with a capture

attribute. The capture attribute allows authors to declaratively request use of a media capture

mechanism, such as a camera or microphone, from within a file upload control, for capturing media on

the spot.

This extension is specifically designed to be simple and declarative, and covers a subset of the media

capture functionality of the web platform. Specifically, the extension does not provide detailed author

control over capture. Use cases requiring more fine-grained author control may be met by using

another specification, Media Capture and Streams [MEDIACAPTURE-STREAMS]. For example,

access to real-time media streams from the hosting device is out of scope for this specification.

2. Conformance

HTML Media Capture https://www.w3.org/TR/2018/REC-html-media-capture-20180201/

3 of 11 30/06/2020, 15:38

As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and notes

in this specification are non-normative. Everything else in this specification is normative.

The key words MUST, MUST NOT, and SHOULD are to be interpreted as described in [RFC2119].

This specification defines conformance criteria that apply to a single product: the user agent that

implements the interfaces that it contains.

Implementations that use ECMAScript to implement the APIs defined in this specification must

implement them in a manner consistent with the ECMAScript Bindings defined in the Web IDL

specification [WEBIDL-1], as this specification uses that specification and terminology.

3. Terminology

The input element, its type attribute, HTMLInputElement interface, accept attribute, File Upload

state, enumerated attribute, missing value default, invalid value default, and reflect are defined in

[HTML51].

The [CEReactions] WebIDL extended attribute is defined in [custom-elements].

The VideoFacingModeEnum enumeration is defined in [MEDIACAPTURE-STREAMS].

The FileList interface is defined in [FILE-API].

In this specification, the term capture control type refers to a specialized type of a file picker control

that is optimized, for the user, for directly capturing media of a MIME type specified by the accept

attribute, using a media capture mechanism in its preferred facing mode.

The term media capture mechanism refers to a device's local media capture device, such as a camera

or microphone.

The preferred facing mode is a hint for the direction of the device's media capture mechanism to be

used.

4. Security and privacy considerations

This section is non-normative.

A User Agent implementation of this specification is advised to seek user consent before initiating

capture of content by microphone or camera. This may be necessary to meet regulatory, legal and best

HTML Media Capture https://www.w3.org/TR/2018/REC-html-media-capture-20180201/

4 of 11 30/06/2020, 15:38

practice requirements related to the privacy of user data. In addition, the User Agent implementation is

advised to provide an indication to the user when an input device is enabled and make it possible for

the user to terminate such capture. Similarly, the User Agent is advised to offer user control, such as to

allow the user to:

select the exact media capture device to be used if there exist multiple devices of the same type

(e.g. a front-facing camera in addition to a primary camera).

disable sound capture when in the video capture mode.

This specification builds upon the security and privacy protections provided by the <input

type="file"> [HTML51] and the [FILE-API] specifications; in particular, it is expected that any

offer to start capturing content from the user’s device would require a specific user interaction on an

HTML element that is entirely controlled by the user agent.

Implementors should take care to prevent additional leakage of privacy-sensitive data from captured

media. For instance, embedding the user’s location in the metadata of captured media (e.g. EXIF)

might transmit more private data than the user is expecting.

5. The capture attribute

When an input element's type attribute is in the File Upload state, and its accept attribute is

specified, the rules in this section apply.

WebIDL

partial interface HTMLInputElement {

 [CEReactions]

 attribute DOMString capture;

};

The capture attribute is an enumerated attribute whose state specifies the preferred facing mode for

the media capture mechanism.

The attribute's keywords are user and environment, which map to the respective states user and

environment. The semantics of the states user and environment mirror the similarly named

enumeration values defined in VideoFacingModeEnum.

In addition, there is a third state, the implementation-specific state.

The missing value default is the implementation-specific state. The invalid value default is also the

HTML Media Capture https://www.w3.org/TR/2018/REC-html-media-capture-20180201/

5 of 11 30/06/2020, 15:38

implementation-specific state.

The capture IDL attribute MUST reflect the respective content attribute of the same name.

When the capture attribute is specified, the user agent SHOULD invoke a file picker of the specific

capture control type.

When the capture attribute is specified, the user agent MUST NOT save the captured media to any

data storage, local or remote.

If the accept attribute's value is set to a MIME type that has no associated capture control type, the

user agent MUST act as if there was no capture attribute.

A. Examples

This section is non-normative.

The following examples demonstrate how to give hints that it is preferred for the user to capture media

of a specific MIME type using the media capture capabilities of the hosting device. Both a simple

declarative example using an HTML form, as well as a more advanced example including scripting,

are presented.

To take a picture using the device's user-facing camera, and upload the picture taken using an

HTML form:

NOTE

If the user agent is unable to support the preferred facing mode, it can fall back to the

implementation-specific default facing mode that maps to the implementation-specific state that

indicates the implementation is to act according to its default behavior.

NOTE

When scripts gain access to the files selected from the file picker (represented by a FileList

object), they can use various mechanisms to store the captured media. These mechanisms are

out of scope for this specification.

HTML Media Capture https://www.w3.org/TR/2018/REC-html-media-capture-20180201/

6 of 11 30/06/2020, 15:38

Or alternatively, to capture video using the device's local video camera facing the environment:

Or alternatively, to capture audio using the device's local microphone (without preferred facing

mode defined, falls back to the implementation-specific default facing mode):

For more advanced use cases, specify the capture attribute in markup:

And handle the file upload in script via XMLHttpRequest:

EXAMPLE 1

<form action="server.cgi" method="post" enctype="multipart/form-data">

<input type="file" name="image" accept="image/*" capture="user">

<input type="submit" value="Upload">

</form>

EXAMPLE 2

<form action="server.cgi" method="post" enctype="multipart/form-data">

<input type="file" name="video" accept="video/*" capture="environment">

<input type="submit" value="Upload">

</form>

EXAMPLE 3

<form action="server.cgi" method="post" enctype="multipart/form-data">

<input type="file" name="audio" accept="audio/*" capture>

<input type="submit" value="Upload">

</form>

EXAMPLE 4

<input type="file" accept="image/*" capture>

<canvas></canvas>

HTML Media Capture https://www.w3.org/TR/2018/REC-html-media-capture-20180201/

7 of 11 30/06/2020, 15:38

The image can also be displayed on the client-side without uploading it e.g. for client-side image

editing purposes, using the FileReader and a canvas element:

EXAMPLE 5

var input = document.querySelector('input[type=file]'); // see Example 4

input.onchange = function () {

var file = input.files[0];

 upload(file);

 drawOnCanvas(file); // see Example 6

 displayAsImage(file); // see Example 7

};

function upload(file) {

var form = new FormData(),

 xhr = new XMLHttpRequest();

 form.append('image', file);

 xhr.open('post', 'server.php', true);

 xhr.send(form);

}

HTML Media Capture https://www.w3.org/TR/2018/REC-html-media-capture-20180201/

8 of 11 30/06/2020, 15:38

Or alternatively, to just display the image, using the createObjectURL() method and an img

element:

EXAMPLE 6

function drawOnCanvas(file) {

var reader = new FileReader();

 reader.onload = function (e) {

var dataURL = e.target.result,

 c = document.querySelector('canvas'), // see Example 4

 ctx = c.getContext('2d'),

 img = new Image();

 img.onload = function() {

 c.width = img.width;

 c.height = img.height;

 ctx.drawImage(img, 0, 0);

 };

 img.src = dataURL;

 };

 reader.readAsDataURL(file);

}

EXAMPLE 7

function displayAsImage(file) {

var imgURL = URL.createObjectURL(file),

 img = document.createElement('img');

 img.onload = function() {

 URL.revokeObjectURL(imgURL);

 };

 img.src = imgURL;

document.body.appendChild(img);

}

HTML Media Capture https://www.w3.org/TR/2018/REC-html-media-capture-20180201/

9 of 11 30/06/2020, 15:38

When an input element's accept attribute is set to image/* and the capture attribute is specified as

in the Example 1 or Example 4, the file picker can be rendered as presented below:

When the attribute is not specified, the file picker can be rendered as represented below:

HTML Media Capture https://www.w3.org/TR/2018/REC-html-media-capture-20180201/

10 of 11 30/06/2020, 15:38

B. References

B.1 Normative references

[custom-elements]
Custom Elements. Domenic Denicola. W3C. 13 October 2016. W3C Working Draft. URL:

https://www.w3.org/TR/custom-elements/

[HTML51]
HTML 5.1 2nd Edition. Steve Faulkner; Arron Eicholz; Travis Leithead; Alex Danilo. W3C. 3

October 2017. W3C Recommendation. URL: https://www.w3.org/TR/html51/

[MEDIACAPTURE-STREAMS]
Media Capture and Streams. Daniel Burnett; Adam Bergkvist; Cullen Jennings; Anant

Narayanan; Bernard Aboba. W3C. 3 October 2017. W3C Candidate Recommendation. URL:

https://www.w3.org/TR/mediacapture-streams/

[RFC2119]
Key words for use in RFCs to Indicate Requirement Levels. S. Bradner. IETF. March 1997. Best

Current Practice. URL: https://tools.ietf.org/html/rfc2119

[WEBIDL-1]
WebIDL Level 1. Cameron McCormack. W3C. 15 December 2016. W3C Recommendation.

URL: https://www.w3.org/TR/2016/REC-WebIDL-1-20161215/

B.2 Informative references

[FILE-API]
File API. Marijn Kruisselbrink. W3C. 26 October 2017. W3C Working Draft. URL:

https://www.w3.org/TR/FileAPI/

[HTML]
HTML Standard. Anne van Kesteren; Domenic Denicola; Ian Hickson; Philip Jägenstedt; Simon

Pieters. WHATWG. Living Standard. URL: https://html.spec.whatwg.org/multipage/

[WEBIDL]
Web IDL. Cameron McCormack; Boris Zbarsky; Tobie Langel. W3C. 15 December 2016. W3C

Editor's Draft. URL: https://heycam.github.io/webidl/

↑

HTML Media Capture https://www.w3.org/TR/2018/REC-html-media-capture-20180201/

11 of 11 30/06/2020, 15:38

