
W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes

W3C Recommendation 5 April 2012

This version:
http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/

Latest version:
http://www.w3.org/TR/xmlschema11-2/

Previous version:
http://www.w3.org/TR/2012/PR-xmlschema11-2-20120119/

Editors (Version 1.1):
David Peterson, invited expert (SGMLWorks!) <davep@iit.edu>
Shudi (Sandy) Gao 高殊镝, IBM <sandygao@ca.ibm.com>
Ashok Malhotra, Oracle Corporation <ashokmalhotra@alum.mit.edu>
C. M. Sperberg-McQueen, Black Mesa Technologies LLC <cmsmcq@blackmesatech.com>
Henry S. Thompson, University of Edinburgh <ht@inf.ed.ac.uk>

Editors (Version 1.0):
Paul V. Biron, Kaiser Permanente, for Health Level Seven <paul@sparrow-hawk.org>
Ashok Malhotra, Oracle Corporation <ashokmalhotra@alum.mit.edu>

Please refer to the errata for this document, which may include some normative corrections.

See also translations.

This document is also available in these non-normative formats: XML, XHTML with changes since version 1.0 marked, XHTML
with changes since previous Working Draft marked, Independent copy of the schema for schema documents, Independent
copy of the DTD for schema documents, and List of translations.

Copyright © 2012 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, trademark and document use rules apply.

Abstract

XML Schema: Datatypes is part 2 of the specification of the XML Schema language. It defines facilities for defining datatypes
to be used in XML Schemas as well as other XML specifications. The datatype language, which is itself represented in XML,
provides a superset of the capabilities found in XML document type definitions (DTDs) for specifying datatypes on elements
and attributes.

Status of this Document

This section describes the status of this document at the time of its publication. Other documents may supersede this
document. A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical
reports index at http://www.w3.org/TR/.

This W3C Recommendation specifies the W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes. It is here made
available for review by W3C members and the public.

Changes since the previous public Working Draft include the following:

Some minor errors, typographic and otherwise, have been corrected.

For those primarily interested in the changes since version 1.0, the appendix Changes since version 1.0 (§I) is the
recommended starting point. An accompanying version of this document displays in color all changes to normative text since
version 1.0; another shows changes since the previous Working Draft.

Comments on this document should be made in W3C's public installation of Bugzilla, specifying "XML Schema" as the product.
Instructions can be found at http://www.w3.org/XML/2006/01/public-bugzilla. If access to Bugzilla is not feasible, please send
your comments to the W3C XML Schema comments mailing list, www-xml-schema-comments@w3.org (archive) and note
explicitly that you have not made a Bugzilla entry for the comment. Each Bugzilla entry and email message should contain only
one comment.

This document has been reviewed by W3C Members, by software developers, and by other W3C groups and interested

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

1 of 171 03/07/2021, 05:45

parties, and is endorsed by the Director as a W3C Recommendation. It is a stable document and may be used as reference
material or cited from another document. W3C's role in making the Recommendation is to draw attention to the specification
and to promote its widespread deployment. This enhances the functionality and interoperability of the Web.

An implementation report for XSD 1.1 was prepared and used in the Director's decision to publish the previous version of this
specification as a Proposed Recommendation. The Director's decision to publish this document as a W3C Recommendation is
based on consideration of reviews of the Proposed Recommendation by the public and by the members of the W3C Advisory
committee.

The W3C XML Schema Working Group intends to process comments made about this recommendation, with any approved
changes being handled as errata to be published separately.

This document has been produced by the W3C XML Schema Working Group as part of the W3C XML Activity. The goals of the
XML Schema language version 1.1 are discussed in the Requirements for XML Schema 1.1 document. The authors of this
document are the members of the XML Schema Working Group. Different parts of this specification have different editors.

This document was produced by a group operating under the 5 February 2004 W3C Patent Policy. W3C maintains a public list
of any patent disclosures made in connection with the deliverables of the group; that page also includes instructions for
disclosing a patent. An individual who has actual knowledge of a patent which the individual believes contains Essential
Claim(s) must disclose the information in accordance with section 6 of the W3C Patent Policy.

The English version of this specification is the only normative version. Information about translations of this document is
available at http://www.w3.org/2003/03/Translations/byTechnology?technology=xmlschema.

Table of Contents

1 Introduction
 1.1 Introduction to Version 1.1
 1.2 Purpose
 1.3 Dependencies on Other Specifications
 1.4 Requirements
 1.5 Scope
 1.6 Terminology
 1.7 Constraints and Contributions
2 Datatype System
 2.1 Datatype
 2.2 Value space

Identity · Equality · Order
 2.3 The Lexical Space and Lexical Mapping

Canonical Mapping
 2.4 Datatype Distinctions

Atomic vs. List vs. Union Datatypes · Special vs. Primitive vs. Ordinary Datatypes · Definition, Derivation, Restriction,
and Construction · Built-in vs. User-Defined Datatypes

3 Built-in Datatypes and Their Definitions
 3.1 Namespace considerations
 3.2 Special Built-in Datatypes

anySimpleType · anyAtomicType
 3.3 Primitive Datatypes

string · boolean · decimal · float · double · duration · dateTime · time · date · gYearMonth · gYear · gMonthDay · gDay
· gMonth · hexBinary · base64Binary · anyURI · QName · NOTATION

 3.4 Other Built-in Datatypes
normalizedString · token · language · NMTOKEN · NMTOKENS · Name · NCName · ID · IDREF · IDREFS · ENTITY ·
ENTITIES · integer · nonPositiveInteger · negativeInteger · long · int · short · byte · nonNegativeInteger ·
unsignedLong · unsignedInt · unsignedShort · unsignedByte · positiveInteger · yearMonthDuration · dayTimeDuration
· dateTimeStamp

4 Datatype components
 4.1 Simple Type Definition

The Simple Type Definition Schema Component · XML Representation of Simple Type Definition Schema
Components · Constraints on XML Representation of Simple Type Definition · Simple Type Definition Validation Rules
· Constraints on Simple Type Definition Schema Components · Built-in Simple Type Definitions

 4.2 Fundamental Facets
ordered · bounded · cardinality · numeric

 4.3 Constraining Facets
length · minLength · maxLength · pattern · enumeration · whiteSpace · maxInclusive · maxExclusive · minExclusive ·
minInclusive · totalDigits · fractionDigits · Assertions · explicitTimezone

5 Conformance
 5.1 Host Languages
 5.2 Independent implementations
 5.3 Conformance of data
 5.4 Partial Implementation of Infinite Datatypes

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

2 of 171 03/07/2021, 05:45

Appendices

A Schema for Schema Documents (Datatypes) (normative)
B DTD for Datatype Definitions (non-normative)
C Illustrative XML representations for the built-in simple type definitions
 C.1 Illustrative XML representations for the built-in primitive type definitions
 C.2 Illustrative XML representations for the built-in ordinary type definitions
D Built-up Value Spaces
 D.1 Numerical Values

Exact Lexical Mappings
 D.2 Date/time Values

The Seven-property Model · Lexical Mappings
E Function Definitions
 E.1 Generic Number-related Functions
 E.2 Duration-related Definitions
 E.3 Date/time-related Definitions

Normalization of property values · Auxiliary Functions · Adding durations to dateTimes · Time on timeline · Lexical
mappings · Canonical Mappings

 E.4 Lexical and Canonical Mappings for Other Datatypes
Lexical and canonical mappings for

F Datatypes and Facets
 F.1 Fundamental Facets
G Regular Expressions
 G.1 Regular expressions and branches
 G.2 Pieces, atoms, quantifiers
 G.3 Characters and metacharacters
 G.4 Character Classes

Character class expressions · Character Class Escapes
H Implementation-defined and implementation-dependent features (normative)
 H.1 Implementation-defined features
 H.2 Implementation-dependent features
I Changes since version 1.0
 I.1 Datatypes and Facets
 I.2 Numerical Datatypes
 I.3 Date/time Datatypes
 I.4 Other changes
J Glossary (non-normative)
K References
 K.1 Normative
 K.2 Non-normative
L Acknowledgements (non-normative)

1 Introduction

1.1 Introduction to Version 1.1

The Working Group has two main goals for this version of W3C XML Schema:

Significant improvements in simplicity of design and clarity of exposition without loss of backward or forward compatibility;

Provision of support for versioning of XML languages defined using the XML Schema specification, including the XML
transfer syntax for schemas itself.

These goals are slightly in tension with one another -- the following summarizes the Working Group's strategic guidelines for
changes between versions 1.0 and 1.1:

1. Add support for versioning (acknowledging that this may be slightly disruptive to the XML transfer syntax at the margins)

2. Allow bug fixes (unless in specific cases we decide that the fix is too disruptive for a point release)

3. Allow editorial changes

4. Allow design cleanup to change behavior in edge cases

5. Allow relatively non-disruptive changes to type hierarchy (to better support current and forthcoming international
standards and W3C recommendations)

6. Allow design cleanup to change component structure (changes to functionality restricted to edge cases)

7. Do not allow any significant changes in functionality

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

3 of 171 03/07/2021, 05:45

8. Do not allow any changes to XML transfer syntax except those required by version control hooks and bug fixes

The overall aim as regards compatibility is that

All schema documents conformant to version 1.0 of this specification should also conform to version 1.1, and should have
the same validation behavior across 1.0 and 1.1 implementations (except possibly in edge cases and in the details of the
resulting PSVI);

The vast majority of schema documents conformant to version 1.1 of this specification should also conform to version 1.0,
leaving aside any incompatibilities arising from support for versioning, and when they are conformant to version 1.0 (or
are made conformant by the removal of versioning information), should have the same validation behavior across 1.0 and
1.1 implementations (again except possibly in edge cases and in the details of the resulting PSVI);

1.2 Purpose

The [XML] specification defines limited facilities for applying datatypes to document content in that documents may contain or
refer to DTDs that assign types to elements and attributes. However, document authors, including authors of traditional
documents and those transporting data in XML, often require a higher degree of type checking to ensure robustness in
document understanding and data interchange.

The table below offers two typical examples of XML instances in which datatypes are implicit: the instance on the left
represents a billing invoice, the instance on the right a memo or perhaps an email message in XML.

Data oriented Document oriented

<invoice>
 <orderDate>1999-01-21</orderDate>
 <shipDate>1999-01-25</shipDate>
 <billingAddress>
 <name>Ashok Malhotra</name>
 <street>123 Microsoft Ave.</street>
 <city>Hawthorne</city>
 <state>NY</state>
 <zip>10532-0000</zip>
 </billingAddress>
 <voice>555-1234</voice>
 <fax>555-4321</fax>
</invoice>

<memo importance='high'
 date='1999-03-23'>
 <from>Paul V. Biron</from>
 <to>Ashok Malhotra</to>
 <subject>Latest draft</subject>
 <body>
 We need to discuss the latest
 draft <emph>immediately</emph>.
 Either email me at <email>
 mailto:paul.v.biron@kp.org</email>
 or call <phone>555-9876</phone>
 </body>
</memo>

The invoice contains several dates and telephone numbers, the postal abbreviation for a state (which comes from an
enumerated list of sanctioned values), and a ZIP code (which takes a definable regular form). The memo contains many of the
same types of information: a date, telephone number, email address and an "importance" value (from an enumerated list, such
as "low", "medium" or "high"). Applications which process invoices and memos need to raise exceptions if something that was
supposed to be a date or telephone number does not conform to the rules for valid dates or telephone numbers.

In both cases, validity constraints exist on the content of the instances that are not expressible in XML DTDs. The limited
datatyping facilities in XML have prevented validating XML processors from supplying the rigorous type checking required in
these situations. The result has been that individual applications writers have had to implement type checking in an ad hoc
manner. This specification addresses the need of both document authors and applications writers for a robust, extensible
datatype system for XML which could be incorporated into XML processors. As discussed below, these datatypes could be
used in other XML-related standards as well.

1.3 Dependencies on Other Specifications

Other specifications on which this one depends are listed in References (§K).

This specification defines some datatypes which depend on definitions in [XML] and [Namespaces in XML]; those definitions,
and therefore the datatypes based on them, vary between version 1.0 ([XML 1.0], [Namespaces in XML 1.0]) and version 1.1
([XML], [Namespaces in XML]) of those specifications. In any given use of this specification, the choice of the 1.0 or the 1.1
definition of those datatypes is ·implementation-defined·.

Conforming implementations of this specification may provide either the 1.1-based datatypes or the 1.0-based datatypes, or
both. If both are supported, the choice of which datatypes to use in a particular assessment episode ������ be under user
control.

Note: When this specification is used to check the datatype validity of XML input, implementations ��� provide the
heuristic of using the 1.1 datatypes if the input is labeled as XML 1.1, and using the 1.0 datatypes if the input is labeled
1.0, but this heuristic ������ be subject to override by users, to support cases where users wish to accept XML 1.1 input
but validate it using the 1.0 datatypes, or accept XML 1.0 input and validate it using the 1.1 datatypes.

This specification makes use of the EBNF notation used in the [XML] specification. Note that some constructs of the EBNF
notation used here resemble the regular-expression syntax defined in this specification (Regular Expressions (§G)), but that
they are not identical: there are differences. For a fuller description of the EBNF notation, see Section 6. Notation of the [XML]

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

4 of 171 03/07/2021, 05:45

specification.

1.4 Requirements

The [XML Schema Requirements] document spells out concrete requirements to be fulfilled by this specification, which state
that the XML Schema Language must:

1. provide for primitive data typing, including byte, date, integer, sequence, SQL and Java primitive datatypes, etc.;

2. define a type system that is adequate for import/export from database systems (e.g., relational, object, OLAP);

3. distinguish requirements relating to lexical data representation vs. those governing an underlying information set;

4. allow creation of user-defined datatypes, such as datatypes that are derived from existing datatypes and which may
constrain certain of its properties (e.g., range, precision, length, format).

1.5 Scope

This specification defines datatypes that can be used in an XML Schema. These datatypes can be specified for element
content that would be specified as #PCDATA and attribute values of various types in a DTD. It is the intention of this
specification that it be usable outside of the context of XML Schemas for a wide range of other XML-related activities such as
[XSL] and [RDF Schema].

1.6 Terminology

The terminology used to describe XML Schema Datatypes is defined in the body of this specification. The terms defined in the
following list are used in building those definitions and in describing the actions of a datatype processor:

[Definition:] for compatibility

A feature of this specification included solely to ensure that schemas which use this feature remain compatible with
[XML].

[Definition:] match

(Of strings or names:) Two strings or names being compared must be identical. Characters with multiple possible
representations in ISO/IEC 10646 (e.g. characters with both precomposed and base+diacritic forms) match only if they
have the same representation in both strings. No case folding is performed.

(Of strings and rules in the grammar:) A string matches a grammatical production if and only if it belongs to the language
generated by that production.

[Definition:] ���

Schemas, schema documents, and processors are permitted to but need not behave as described.

[Definition:] ������

It is recommended that schemas, schema documents, and processors behave as described, but there can be valid
reasons for them not to; it is important that the full implications be understood and carefully weighed before adopting
behavior at variance with the recommendation.

[Definition:] ����

(Of schemas and schema documents:) Schemas and documents are required to behave as described; otherwise they are
in ·error·.

(Of processors:) Processors are required to behave as described.

[Definition:] ���� ���

Schemas, schema documents and processors are forbidden to behave as described; schemas and documents which
nevertheless do so are in ·error·.

[Definition:] error

A failure of a schema or schema document to conform to the rules of this specification.

Except as otherwise specified, processors ���� distinguish error-free (conforming) schemas and schema documents
from those with errors; if a schema used in type-validation or a schema document used in constructing a schema is in
error, processors ���� report the fact; if more than one is in error, it is ·implementation-dependent· whether more than
one is reported as being in error. If more than one of the constraints given in this specification is violated, it is

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

5 of 171 03/07/2021, 05:45

·implementation-dependent· how many of the violations, and which, are reported.

Note: Failure of an XML element or attribute to be datatype-valid against a particular datatype in a particular schema
is not in itself a failure to conform to this specification and thus, for purposes of this specification, not an error.

[Definition:] user option

A choice left under the control of the user of a processor, rather than being fixed for all users or uses of the processor.

Statements in this specification that "Processors ��� at user option" behave in a certain way mean that processors ���
provide mechanisms to allow users (i.e. invokers of the processor) to enable or disable the behavior indicated.
Processors which do not provide such user-operable controls ���� ��� behave in the way indicated. Processors which
do provide such user-operable controls ���� make it possible for the user to disable the optional behavior.

Note: The normal expectation is that the default setting for such options will be to disable the optional behavior in
question, enabling it only when the user explicitly requests it. This is not, however, a requirement of conformance: if
the processor's documentation makes clear that the user can disable the optional behavior, then invoking the
processor without requesting that it be disabled can be taken as equivalent to a request that it be enabled. It is
required, however, that it in fact be possible for the user to disable the optional behavior.

Note: Nothing in this specification constrains the manner in which processors allow users to control user options.
Command-line options, menu choices in a graphical user interface, environment variables, alternative call patterns in
an application programming interface, and other mechanisms may all be taken as providing user options.

1.7 Constraints and Contributions

This specification provides three different kinds of normative statements about schema components, their representations in
XML and their contribution to the schema-validation of information items:

[Definition:] Constraint on Schemas

Constraints on the schema components themselves, i.e. conditions components ���� satisfy to be components at all.
Largely to be found in Datatype components (§4).

[Definition:] Schema Representation Constraint

Constraints on the representation of schema components in XML. Some but not all of these are expressed in Schema for
Schema Documents (Datatypes) (normative) (§A) and DTD for Datatype Definitions (non-normative) (§B).

[Definition:] Validation Rule

Constraints expressed by schema components which information items ���� satisfy to be schema-valid. Largely to be
found in Datatype components (§4).

2 Datatype System

This section describes the conceptual framework behind the datatype system defined in this specification. The framework has
been influenced by the [ISO 11404] standard on language-independent datatypes as well as the datatypes for [SQL] and for
programming languages such as Java.

The datatypes discussed in this specification are for the most part well known abstract concepts such as integer and date. It is
not the place of this specification to thoroughly define these abstract concepts; many other publications provide excellent
definitions. However, this specification will attempt to describe the abstract concepts well enough that they can be readily
recognized and distinguished from other abstractions with which they may be confused.

Note: Only those operations and relations needed for schema processing are defined in this specification. Applications
using these datatypes are generally expected to implement appropriate additional functions and/or relations to make the
datatype generally useful. For example, the description herein of the float datatype does not define addition or
multiplication, much less all of the operations defined for that datatype in [IEEE 754-2008] on which it is based. For some
datatypes (e.g. language or anyURI) defined in part by reference to other specifications which impose constraints not part
of the datatypes as defined here, applications may also wish to check that values conform to the requirements given in the
current version of the relevant external specification.

2.1 Datatype

[Definition:] In this specification, a datatype has three properties:

A ·value space·, which is a set of values.

A ·lexical space·, which is a set of ·literals· used to denote the values.

A small collection of functions, relations, and procedures associated with the datatype. Included are equality and (for

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

6 of 171 03/07/2021, 05:45

some datatypes) order relations on the ·value space·, and a ·lexical mapping·, which is a mapping from the ·lexical
space· into the ·value space·.

Note: This specification only defines the operations and relations needed for schema processing. The choice of
terminology for describing/naming the datatypes is selected to guide users and implementers in how to expand the
datatype to be generally useful—i.e., how to recognize the "real world" datatypes and their variants for which the datatypes
defined herein are meant to be used for data interchange.

Along with the ·lexical mapping· it is often useful to have an inverse which provides a standard ·lexical representation· for each
value. Such a ·canonical mapping· is not required for schema processing, but is described herein for the benefit of users of
this specification, and other specifications which might find it useful to reference these descriptions normatively. For some
datatypes, notably QName and NOTATION, the mapping from lexical representations to values is context-dependent; for these
types, no ·canonical mapping· is defined.

Note: Where ·canonical mappings· are defined in this specification, they are defined for ·primitive· datatypes. When a
datatype is derived using facets which directly constrain the ·value space·, then for each value eliminated from the ·value
space·, the corresponding lexical representations are dropped from the lexical space. The ·canonical mapping· for such a
datatype is a subset of the ·canonical mapping· for its ·primitive· type and provides a ·canonical representation· for each
value remaining in the ·value space·.

The ·pattern· facet, on the other hand, and any other (·implementation-defined·) ·lexical· facets, restrict the ·lexical space·
directly. When more than one lexical representation is provided for a given value, such facets may remove the ·canonical
representation· while permitting a different lexical representation; in this case, the value remains in the ·value space· but
has no ·canonical representation·. This specification provides no recourse in such situations. Applications are free to deal
with it as they see fit.

Note: This specification sometimes uses the shorter form "type" where one might strictly speaking expect the longer form
"datatype" (e.g. in the phrases "union type", "list type", "base type", "item type", etc. No systematic distinction is intended
between the forms of these phrase with "type" and those with "datatype"; the two forms are used interchangeably.

The distinction between "datatype" and "simple type definition", by contrast, carries more information: the datatype is
characterized by its ·value space·, ·lexical space·, ·lexical mapping·, etc., as just described, independently of the specific
facets or other definitional mechanisms used in the simple type definition to describe that particular ·value space· or
·lexical space·. Different simple type definitions with different selections of facets can describe the same datatype.

2.2 Value space
 2.2.1 Identity
 2.2.2 Equality
 2.2.3 Order

[Definition:] The value space of a datatype is the set of values for that datatype. Associated with each value space are
selected operations and relations necessary to permit proper schema processing. Each value in the value space of a
·primitive· or ·ordinary· datatype is denoted by one or more character strings in its ·lexical space·, according to ·the lexical
mapping·; ·special· datatypes, by contrast, may include "ineffable" values not mapped to by any lexical representation. (If the
mapping is restricted during a derivation in such a way that a value has no denotation, that value is dropped from the value
space.)

The value spaces of datatypes are abstractions, and are defined in Built-in Datatypes and Their Definitions (§3) to the extent
needed to clarify them for readers. For example, in defining the numerical datatypes, we assume some general numerical
concepts such as number and integer are known. In many cases we provide references to other documents providing more
complete definitions.

Note: The value spaces and the values therein are abstractions. This specification does not prescribe any particular
internal representations that must be used when implementing these datatypes. In some cases, there are references to
other specifications which do prescribe specific internal representations; these specific internal representations must be
used to comply with those other specifications, but need not be used to comply with this specification.

In addition, other applications are expected to define additional appropriate operations and/or relations on these value
spaces (e.g., addition and multiplication on the various numerical datatypes' value spaces), and are permitted where
appropriate to even redefine the operations and relations defined within this specification, provided that for schema
processing the relations and operations used are those defined herein.

The ·value space· of a datatype can be defined in one of the following ways:

defined elsewhere axiomatically from fundamental notions (intensional definition) [see ·primitive·]

enumerated outright from values of an already defined datatype (extensional definition) [see ·enumeration·]

defined by restricting the ·value space· of an already defined datatype to a particular subset with a given set of properties
[see ·derived·]

defined as a combination of values from one or more already defined ·value space·(s) by a specific construction

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

7 of 171 03/07/2021, 05:45

procedure [see ·list· and ·union·]

The relations of identity and equality are required for each value space. An order relation is specified for some value spaces,
but not all. A very few datatypes have other relations or operations prescribed for the purposes of this specification.

2.2.1 Identity

The identity relation is always defined. Every value space inherently has an identity relation. Two things are identical if and only
if they are actually the same thing: i.e., if there is no way whatever to tell them apart.

Note: This does not preclude implementing datatypes by using more than one internal representation for a given value,
provided no mechanism inherent in the datatype implementation (i.e., other than bit-string-preserving "casting" of the
datum to a different datatype) will distinguish between the two representations.

In the identity relation defined herein, values from different ·primitive· datatypes' ·value spaces· are made artificially distinct if
they might otherwise be considered identical. For example, there is a number two in the decimal datatype and a number two in
the float datatype. In the identity relation defined herein, these two values are considered distinct. Other applications making
use of these datatypes may choose to consider values such as these identical, but for the view of ·primitive· datatypes' ·value
spaces· used herein, they are distinct.

WARNING: Care must be taken when identifying values across distinct primitive datatypes. The ·literals· '0.1' and
'0.10000000009' map to the same value in float (neither 0.1 nor 0.10000000009 is in the value space, and each literal is mapped
to the nearest value, namely 0.100000001490116119384765625), but map to distinct values in decimal.

Note: Datatypes ·constructed· by ·facet-based restriction· do not create new values; they define subsets of some
·primitive· datatype's ·value space·. A consequence of this fact is that the ·literals· '+2', treated as a decimal, '+2', treated
as an integer, and '+2', treated as a byte, all denote the same value. They are not only equal but identical.

Given a list A and a list B, A and B are the same list if they are the same sequence of atomic values. The necessary and
sufficient conditions for this identity are that A and B have the same length and that the items of A are pairwise identical to the
items of B.

Note: It is a consequence of the rule just given for list identity that there is only one empty list. An empty list declared as
having ·item type· decimal and an empty list declared as having ·item type· string are not only equal but identical.

2.2.2 Equality

Each ·primitive· datatype has prescribed an equality relation for its value space. The equality relation for most datatypes is the
identity relation. In the few cases where it is not, equality has been carefully defined so that for most operations of interest to
the datatype, if two values are equal and one is substituted for the other as an argument to any of the operations, the results
will always also be equal.

On the other hand, equality need not cover the entire value space of the datatype (though it usually does). In particular, NaN is
not equal to itself in the float and double datatypes.

This equality relation is used in conjunction with identity when making ·facet-based restrictions· by enumeration, when
checking identity constraints (in the context of [XSD 1.1 Part 1: Structures]) and when checking value constraints. It is used in
conjunction with order when making ·facet-based restrictions· involving order. The equality relation used in the evaluation of
XPath expressions may differ. When processing XPath expressions as part of XML schema-validity assessment or otherwise
testing membership in the ·value space· of a datatype whose derivation involves ·assertions·, equality (like all other relations)
within those expressions is interpreted using the rules of XPath ([XPath 2.0]). All comparisons for "sameness" prescribed by
this specification test for either equality or identity, not for identity alone.

Note: In the prior version of this specification (1.0), equality was always identity. This has been changed to permit the
datatypes defined herein to more closely match the "real world" datatypes for which they are intended to be used as
transmission formats.

For example, the float datatype has an equality which is not the identity (−0 = +0 , but they are not identical—although
they were identical in the 1.0 version of this specification), and whose domain excludes one value, NaN, so that
NaN ≠ NaN .

For another example, the dateTime datatype previously lost any time-zone offset information in the ·lexical representation·
as the value was converted to ·UTC·; now the time zone offset is retained and two values representing the same "moment
in time" but with different remembered time zone offsets are now equal but not identical.

In the equality relation defined herein, values from different primitive data spaces are made artificially unequal even if they
might otherwise be considered equal. For example, there is a number two in the decimal datatype and a number two in the
float datatype. In the equality relation defined herein, these two values are considered unequal. Other applications making use
of these datatypes may choose to consider values such as these equal; nonetheless, in the equality relation defined herein,
they are unequal.

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

8 of 171 03/07/2021, 05:45

Two lists A and B are equal if and only if they have the same length and their items are pairwise equal. A list of length one
containing a value V1 and an atomic value V2 are equal if and only if V1 is equal to V2.

For the purposes of this specification, there is one equality relation for all values of all datatypes (the union of the various
datatype's individual equalities, if one consider relations to be sets of ordered pairs). The equality relation is denoted by '=' and
its negation by '≠', each used as a binary infix predicate: x = y and x ≠ y . On the other hand, identity relationships are
always described in words.

2.2.3 Order

For some datatypes, an order relation is prescribed for use in checking upper and lower bounds of the ·value space·. This
order may be a partial order, which means that there may be values in the ·value space· which are neither equal, less-than, nor
greater-than. Such value pairs are incomparable. In many cases, no order is prescribed; each pair of values is either equal or
·incomparable·. [Definition:] Two values that are neither equal, less-than, nor greater-than are incomparable. Two values that
are not ·incomparable· are comparable.

The order relation is used in conjunction with equality when making ·facet-based restrictions· involving order. This is the only
use of this order relation for schema processing. Of course, when processing XPath expressions as part of XML schema-
validity assessment or otherwise testing membership in the ·value space· of a datatype whose derivation involves ·assertions·,
order (like all other relations) within those expressions is interpreted using the rules of XPath ([XPath 2.0]).

In this specification, this less-than order relation is denoted by '<' (and its inverse by '>'), the weak order by '≤' (and its inverse
by '≥'), and the resulting ·incomparable· relation by '<>', each used as a binary infix predicate: x < y , x ≤ y , x > y , x ≥ y ,
and x <> y .

Note: The weak order "less-than-or-equal" means "less-than" or "equal" and one can tell which. For example, the duration
P1M (one month) is not less-than-or-equal P31D (thirty-one days) because P1M is not less than P31D, nor is P1M equal
to P31D. Instead, P1M is ·incomparable· with P31D.) The formal definition of order for duration (duration (§3.3.6))
ensures that this is true.

For purposes of this specification, the value spaces of primitive datatypes are disjoint, even in cases where the abstractions
they represent might be thought of as having values in common. In the order relations defined in this specification, values from
different value spaces are ·incomparable·. For example, the numbers two and three are values in both the decimal datatype
and the float datatype. In the order relation defined here, the two in the decimal datatype is not less than the three in the float
datatype; the two values are incomparable. Other applications making use of these datatypes may choose to consider values
such as these comparable.

Note: Comparison of values from different ·primitive· datatypes can sometimes be an error and sometimes not, depending
on context.

When made for purposes of checking an enumeration constraint, such a comparison is not in itself an error, but since no
two values from different ·primitive· ·value spaces· are equal, any comparison of ·incomparable· values will invariably be
false.

Specifying an upper or lower bound which is of the wrong primitive datatype (and therefore ·incomparable· with the values
of the datatype it is supposed to restrict) is, by contrast, always an error. It is a consequence of the rules for ·facet-based
restriction· that in conforming simple type definitions, the values of upper and lower bounds, and enumerated values, ����
be drawn from the value space of the ·base type·, which necessarily means from the same ·primitive· datatype.

Comparison of ·incomparable· values in the context of an XPath expression (e.g. in an assertion or in the rules for
conditional type assignment) can raise a dynamic error in the evaluation of the XPath expression; see [XQuery 1.0 and
XPath 2.0 Functions and Operators] for details.

2.3 The Lexical Space and Lexical Mapping

[Definition:] The lexical mapping for a datatype is a prescribed relation which maps from the ·lexical space· of the datatype
into its ·value space·.

[Definition:] The lexical space of a datatype is the prescribed set of strings which ·the lexical mapping· for that datatype maps
to values of that datatype.

[Definition:] The members of the ·lexical space· are lexical representations of the values to which they are mapped.

Note: For the ·special· datatypes, the ·lexical mappings· defined here map from the ·lexical space· into, but not onto, the
·value space·. The ·value spaces· of the ·special· datatypes include "ineffable" values for which the ·lexical mappings·
defined in this specification provide no lexical representation.

For the ·primitive· and ·ordinary· atomic datatypes, the ·lexical mapping· is a (total) function on the entire ·lexical space·
onto (not merely into) the ·value space·: every member of the ·lexical space· maps into the ·value space·, and every value
is mapped to by some member of the ·lexical space·.

For ·union· datatypes, the ·lexical mapping· is not necessarily a function, since the same ·literal· may map to different

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

9 of 171 03/07/2021, 05:45

values in different member types. For ·list· datatypes, the ·lexical mapping· is a function if and only if the ·lexical mapping·
of the list's ·item type· is a function.

[Definition:] A sequence of zero or more characters in the Universal Character Set (UCS) which may or may not prove upon
inspection to be a member of the ·lexical space· of a given datatype and thus a ·lexical representation· of a given value in that
datatype's ·value space·, is referred to as a literal. The term is used indifferently both for character sequences which are
members of a particular ·lexical space· and for those which are not.

If a derivation introduces a ·pre-lexical· facet value (a new value for whiteSpace or an implementation-defined ·pre-lexical·
facet), the corresponding ·pre-lexical· transformation of a character string, if indeed it changed that string, could prevent that
string from ever having the ·lexical mapping· of the derived datatype applied to it. Character strings that a ·pre-lexical·
transformation blocks in this way (i.e., they are not in the range of the ·pre-lexical· facet's transformation) are always dropped
from the derived datatype's ·lexical space·.

Note: One should be aware that in the context of XML schema-validity assessment, there are ·pre-lexical· transformations
of the input character string (controlled by the whiteSpace facet and any implementation-defined ·pre-lexical· facets) which
result in the intended ·literal·. Systems other than XML schema-validity assessment utilizing this specification may or may
not implement these transformations. If they do not, then input character strings that would have been transformed into
correct ·lexical representations·, when taken "raw", may not be correct ·lexical representations·.

Should a derivation be made using a derivation mechanism that removes ·lexical representations· from the·lexical space· to
the extent that one or more values cease to have any ·lexical representation·, then those values are dropped from the ·value
space·.

Note: This could happen by means of a pattern or other ·lexical· facet, or by a ·pre-lexical· facet as described above.

Conversely, should a derivation remove values then their ·lexical representations· are dropped from the ·lexical space· unless
there is a facet value whose impact is defined to cause the otherwise-dropped ·lexical representation· to be mapped to another
value instead.

Note: There are currently no facets with such an impact. There may be in the future.

For example, '100' and '1.0E2' are two different ·lexical representations· from the float datatype which both denote the same
value. The datatype system defined in this specification provides mechanisms for schema designers to control the ·value
space· and the corresponding set of acceptable ·lexical representations· of those values for a datatype.

2.3.1 Canonical Mapping

While the datatypes defined in this specification often have a single ·lexical representation· for each value (i.e., each value in
the datatype's ·value space· is denoted by a single ·representation· in its ·lexical space·), this is not always the case. The
example in the previous section shows two ·lexical representations· from the float datatype which denote the same value.

[Definition:] The canonical mapping is a prescribed subset of the inverse of a ·lexical mapping· which is one-to-one and
whose domain (where possible) is the entire range of the ·lexical mapping· (the ·value space·). Thus a ·canonical mapping·
selects one ·lexical representation· for each value in the ·value space·.

[Definition:] The canonical representation of a value in the ·value space· of a datatype is the ·lexical representation·
associated with that value by the datatype's ·canonical mapping·.

·Canonical mappings· are not available for datatypes whose ·lexical mappings· are context dependent (i.e., mappings for which
the value of a ·lexical representation· depends on the context in which it occurs, or for which a character string may or may not
be a valid ·lexical representation· similarly depending on its context)

Note: ·Canonical representations· are provided where feasible for the use of other applications; they are not required for
schema processing itself. A conforming schema processor implementation is not required to implement ·canonical
mappings·.

2.4 Datatype Distinctions
 2.4.1 Atomic vs. List vs. Union Datatypes
 2.4.1.1 Atomic Datatypes
 2.4.1.2 List Datatypes
 2.4.1.3 Union datatypes
 2.4.2 Special vs. Primitive vs. Ordinary Datatypes
 2.4.2.1 Facet-based Restriction
 2.4.2.2 Construction by List
 2.4.2.3 Construction by Union
 2.4.3 Definition, Derivation, Restriction, and Construction
 2.4.4 Built-in vs. User-Defined Datatypes

It is useful to categorize the datatypes defined in this specification along various dimensions, defining terms which can be used
to characterize datatypes and the Simple Type Definitions which define them.

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

10 of 171 03/07/2021, 05:45

2.4.1 Atomic vs. List vs. Union Datatypes

First, we distinguish ·atomic·, ·list·, and ·union· datatypes.

[Definition:] An atomic value is an elementary value, not constructed from simpler values by any user-accessible means
defined by this specification.

[Definition:] Atomic datatypes are those whose ·value spaces· contain only ·atomic values·. Atomic datatypes are
anyAtomicType and all datatypes ·derived· from it.

[Definition:] List datatypes are those having values each of which consists of a finite-length (possibly empty) sequence of
·atomic values·. The values in a list are drawn from some ·atomic· datatype (or from a ·union· of ·atomic· datatypes),
which is the ·item type· of the list.

Note: It is a consequence of constraints normatively specified elsewhere in this document (in particular, the
component properties specified in The Simple Type Definition Schema Component (§4.1.1)) that the ·item type· of a
list ��� be any ·atomic· datatype, or any ·union· datatype whose ·basic members· are all ·atomic· datatypes (so a
·list· of a ·union· of ·atomic· datatypes is possible, but not a ·list· of a ·union· of ·lists·). The ·item type· of a list ����
��� itself be a list datatype.

[Definition:] Union datatypes are (a) those whose ·value spaces·, ·lexical spaces·, and ·lexical mappings· are the union
of the ·value spaces·, ·lexical spaces·, and ·lexical mappings· of one or more other datatypes, which are the ·member
types· of the union, or (b) those derived by ·facet-based restriction· of another union datatype.

Note: It is a consequence of constraints normatively specified elsewhere in this document (in particular, the
component properties specified in The Simple Type Definition Schema Component (§4.1.1)) that any ·primitive· or
·ordinary· datatype ��� occur among the ·member types· of a ·union·. (In particular, ·union· datatypes may
themselves be members of ·unions·, as may ·lists·.) The only prohibition is that no ·special· datatype may be a
member of a ·union·.

For example, a single token which ·matches· Nmtoken from [XML] is in the value space of the ·atomic· datatype NMTOKEN,
while a sequence of such tokens is in the value space of the ·list· datatype NMTOKENS.

2.4.1.1 Atomic Datatypes

An ·atomic· datatype has a ·value space· consisting of a set of "atomic" or elementary values.

Note: Atomic values are sometimes regarded, and described, as "not decomposable", but in fact the values in several
datatypes defined here are described with internal structure, which is appealed to in checking whether particular values
satisfy various constraints (e.g. upper and lower bounds on a datatype). Other specifications which use the datatypes
defined here may define operations which attribute internal structure to values and expose or act upon that structure.

The ·lexical space· of an ·atomic· datatype is a set of ·literals· whose internal structure is specific to the datatype in question.

There is one ·special· ·atomic· datatype (anyAtomicType), and a number of ·primitive· ·atomic· datatypes which have
anyAtomicType as their ·base type·. All other ·atomic· datatypes are ·derived· either from one of the ·primitive· ·atomic·
datatypes or from another ·ordinary· ·atomic· datatype. No ·user-defined· datatype ��� have anyAtomicType as its ·base
type·.

2.4.1.2 List Datatypes

·List· datatypes are always ·constructed· from some other type; they are never ·primitive·. The ·value space· of a ·list· datatype
is the set of finite-length sequences of zero or more ·atomic· values where each ·atomic· value is drawn from the ·value space·
of the lists's ·item type· and has a ·lexical representation· containing no whitespace. The ·lexical space· of a ·list· datatype is a
set of ·literals· each of which is a space-separated sequence of ·literals· of the ·item type·.

[Definition:] The ·atomic· or ·union· datatype that participates in the definition of a ·list· datatype is the item type of that ·list·
datatype. If the ·item type· is a ·union·, each of its ·basic members· ���� be ·atomic·.

Example

<simpleType name='sizes'>
 <list itemType='decimal'/>
</simpleType>

<cerealSizes xsi:type='sizes'> 8 10.5 12 </cerealSizes>

A ·list· datatype can be ·constructed· from an ordinary or ·primitive· ·atomic· datatype whose ·lexical space· allows whitespace
(such as string or anyURI) or a ·union· datatype any of whose {member type definitions}'s ·lexical space· allows space. Since
·list· items are separated at whitespace before the ·lexical representations· of the items are mapped to values, no whitespace

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

11 of 171 03/07/2021, 05:45

will ever occur in the ·lexical representation· of a ·list· item, even when the item type would in principle allow it. For the same
reason, when every possible ·lexical representation· of a given value in the ·value space· of the ·item type· includes
whitespace, that value can never occur as an item in any value of the ·list· datatype.

Example

<simpleType name='listOfString'>
 <list itemType='string'/>
</simpleType>

<someElement xsi:type='listOfString'>
this is not list item 1
this is not list item 2
this is not list item 3
</someElement>

In the above example, the value of the someElement element is not a ·list· of ·length· 3; rather, it is a ·list· of ·length· 18.

When a datatype is ·derived· by ·restricting· a ·list· datatype, the following ·constraining facets· apply:

·length·

·maxLength·

·minLength·

·enumeration·

·pattern·

·whiteSpace·

·assertions·

For each of ·length·, ·maxLength· and ·minLength·, the length is measured in number of list items. The value of ·whiteSpace·
is fixed to the value collapse.

For ·list· datatypes the ·lexical space· is composed of space-separated ·literals· of the ·item type·. Any ·pattern· specified
when a new datatype is ·derived· from a ·list· datatype applies to the members of the ·list· datatype's ·lexical space·, not to the
members of the ·lexical space· of the ·item type·. Similarly, enumerated values are compared to the entire ·list·, not to
individual list items, and assertions apply to the entire ·list· too. Lists are identical if and only if they have the same length and
their items are pairwise identical; they are equal if and only if they have the same length and their items are pairwise equal.
And a list of length one whose item is an atomic value V1 is equal or identical to an atomic value V2 if and only if V1 is equal or
identical to V2.

Example

<xs:simpleType name='myList'>
<xs:list itemType='xs:integer'/>

</xs:simpleType>
<xs:simpleType name='myRestrictedList'>

<xs:restriction base='myList'>
<xs:pattern value='123 (\d+\s)*456'/>

</xs:restriction>
</xs:simpleType>
<someElement xsi:type='myRestrictedList'>123 456</someElement>
<someElement xsi:type='myRestrictedList'>123 987 456</someElement>
<someElement xsi:type='myRestrictedList'>123 987 567 456</someElement>

The ·canonical mapping· of a ·list· datatype maps each value onto the space-separated concatenation of the ·canonical
representations· of all the items in the value (in order), using the ·canonical mapping· of the ·item type·.

2.4.1.3 Union datatypes

Union types may be defined in either of two ways. When a union type is ·constructed· by ·union·, its ·value space·, ·lexical
space·, and ·lexical mapping· are the "ordered unions" of the ·value spaces·, ·lexical spaces·, and ·lexical mappings· of its
·member types·.

It will be observed that the ·lexical mapping· of a union, so defined, is not necessarily a function: a given ·literal· may map to
one value or to several values of different ·primitive· datatypes, and it may be indeterminate which value is to be preferred in a
particular context. When the datatypes defined here are used in the context of [XSD 1.1 Part 1: Structures], the xsi:type
attribute defined by that specification in section xsi:type can be used to indicate which value a ·literal· which is the content of an

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

12 of 171 03/07/2021, 05:45

element should map to. In other contexts, other rules (such as type coercion rules) may be employed to determine which value
is to be used.

When a union type is defined by ·restricting· another ·union·, its ·value space·, ·lexical space·, and ·lexical mapping· are
subsets of the ·value spaces·, ·lexical spaces·, and ·lexical mappings· of its ·base type·.

·Union· datatypes are always ·constructed· from other datatypes; they are never ·primitive·. Currently, there are no ·built-
in· ·union· datatypes.

Example

A prototypical example of a ·union· type is the maxOccurs attribute on the element element in XML Schema itself: it is a
union of nonNegativeInteger and an enumeration with the single member, the string "unbounded", as shown below.

 <attributeGroup name="occurs">
 <attribute name="minOccurs" type="nonNegativeInteger"
 use="optional" default="1"/>
 <attribute name="maxOccurs"use="optional" default="1">
 <simpleType>
 <union>
 <simpleType>
 <restriction base='nonNegativeInteger'/>
 </simpleType>
 <simpleType>
 <restriction base='string'>
 <enumeration value='unbounded'/>
 </restriction>
 </simpleType>
 </union>
 </simpleType>
 </attribute>
 </attributeGroup>

Any number (zero or more) of ordinary or ·primitive· ·datatypes· can participate in a ·union· type.

[Definition:] The datatypes that participate in the definition of a ·union· datatype are known as the member types of that
·union· datatype.

Note: When datatypes are represented using XSD schema components, as described in Datatype components (§4), the
member types of a union are those simple type definitions given in the {member type definitions} property.

[Definition:] The transitive membership of a ·union· is the set of its own ·member types·, and the ·member types· of its
members, and so on. More formally, if U is a ·union·, then (a) its ·member types· are in the transitive membership of U, and (b)
for any datatypes T1 and T2, if T1 is in the transitive membership of U and T2 is one of the ·member types· of T1, then T2 is
also in the transitive membership of U.

The ·transitive membership· of a ·union· ���� ��� contain the ·union· itself, nor any datatype ·derived· or ·constructed· from
the ·union·.

[Definition:] Those members of the ·transitive membership· of a ·union· datatype U which are themselves not ·union·
datatypes are the basic members of U.

[Definition:] If a datatype M is in the ·transitive membership· of a ·union· datatype U, but not one of U's ·member types·, then a
sequence of one or more ·union· datatypes necessarily exists, such that the first is one of the ·member types· of U, each is one
of the ·member types· of its predecessor in the sequence, and M is one of the ·member types· of the last in the sequence. The
·union· datatypes in this sequence are said to intervene between M and U. When U and M are given by the context, the
datatypes in the sequence are referred to as the intervening unions. When M is one of the ·member types· of U, the set of
intervening unions is the empty set.

[Definition:] In a valid instance of any ·union·, the first of its members in order which accepts the instance as valid is the active
member type. [Definition:] If the ·active member type· is itself a ·union·, one of its members will be its ·active member type·,
and so on, until finally a ·basic (non-union) member· is reached. That ·basic member· is the active basic member of the
union.

The order in which the ·member types· are specified in the definition (that is, in the case of datatypes defined in a schema
document, the order of the <simpleType> children of the <union> element, or the order of the QNames in the memberTypes
attribute) is significant. During validation, an element or attribute's value is validated against the ·member types· in the order in
which they appear in the definition until a match is found. As noted above, the evaluation order can be overridden with the use
of xsi:type.

Example

For example, given the definition below, the first instance of the <size> element validates correctly as an integer (§3.4.13),
the second and third as string (§3.3.1).

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

13 of 171 03/07/2021, 05:45

 <xs:element name='size'>
 <xs:simpleType>
 <xs:union>
 <xs:simpleType>
 <xs:restriction base='integer'/>
 </xs:simpleType>
 <xs:simpleType>
 <xs:restriction base='string'/>
 </xs:simpleType>
 </xs:union>
 </xs:simpleType>
 </xs:element>

 <size>1</size>
 <size>large</size>
 <size xsi:type='xs:string'>1</size>

The ·canonical mapping· of a ·union· datatype maps each value onto the ·canonical representation· of that value obtained
using the ·canonical mapping· of the first ·member type· in whose value space it lies.

When a datatype is ·derived· by ·restricting· a ·union· datatype, the following ·constraining facets· apply:

·enumeration·

·pattern·

·assertions·

2.4.2 Special vs. Primitive vs. Ordinary Datatypes

Next, we distinguish ·special·, ·primitive·, and ·ordinary· (or ·constructed·) datatypes. Each datatype defined by or in
accordance with this specification falls into exactly one of these categories.

[Definition:] The special datatypes are anySimpleType and anyAtomicType. They are special by virtue of their position in
the type hierarchy.

[Definition:] Primitive datatypes are those datatypes that are not ·special· and are not defined in terms of other
datatypes; they exist ab initio. All ·primitive· datatypes have anyAtomicType as their ·base type·, but their ·value· and
·lexical spaces· must be given in prose; they cannot be described as ·restrictions· of anyAtomicType by the application of
particular ·constraining facets·.

Note: As normatively specified elsewhere, conforming processors ���� support all the primitive datatypes defined in
this specification; it is ·implementation-defined· whether other primitive datatypes are supported.

Processors ���, for example, support the floating-point decimal datatype specified in [Precision Decimal].

[Definition:] Ordinary datatypes are all datatypes other than the ·special· and ·primitive· datatypes. ·Ordinary· datatypes
can be understood fully in terms of their Simple Type Definition and the properties of the datatypes from which they are
·constructed·.

For example, in this specification, float is a ·primitive· datatype based on a well-defined mathematical concept and not defined
in terms of other datatypes, while integer is ·constructed· from the more general datatype decimal.

2.4.2.1 Facet-based Restriction

[Definition:] A datatype is defined by facet-based restriction of another datatype (its ·base type·), when values for zero or
more ·constraining facets· are specified that serve to constrain its ·value space· and/or its ·lexical space· to a subset of those
of the ·base type·. The ·base type· of a ·facet-based restriction· ���� be a ·primitive· or ·ordinary· datatype.

2.4.2.2 Construction by List

A ·list· datatype can be ·constructed· from another datatype (its ·item type·) by creating a ·value space· that consists of finite-
length sequences of zero or more values of its ·item type·. Datatypes so ·constructed· have anySimpleType as their ·base
type·. Note that since the ·value space· and ·lexical space· of any ·list· datatype are necessarily subsets of the ·value space·
and ·lexical space· of anySimpleType, any datatype ·constructed· as a ·list· is a ·restriction· of its base type.

2.4.2.3 Construction by Union

One datatype can be ·constructed· from one or more datatypes by unioning their ·lexical mappings· and, consequently, their
·value spaces· and ·lexical spaces·. Datatypes so ·constructed· also have anySimpleType as their ·base type·. Note that since
the ·value space· and ·lexical space· of any ·union· datatype are necessarily subsets of the ·value space· and ·lexical space·

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

14 of 171 03/07/2021, 05:45

of anySimpleType, any datatype ·constructed· as a ·union· is a ·restriction· of its base type.

2.4.3 Definition, Derivation, Restriction, and Construction

Definition, derivation, restriction, and construction are conceptually distinct, although in practice they are frequently performed
by the same mechanisms.

By 'definition' is meant the explicit identification of the relevant properties of a datatype, in particular its ·value space·, ·lexical
space·, and ·lexical mapping·.

The properties of the ·special· and the standard ·primitive· datatypes are defined by this specification. A Simple Type Definition
is present for each of these datatypes in every valid schema; it serves as a representation of the datatype, but by itself it does
not capture all the relevant information and does not suffice (without knowledge of this specification) to define the datatype.

Note: The properties of any ·implementation-defined· ·primitive· datatypes are given not here but in the documentation for
the implementation in question. Alternatively, a primitive datatype not specified in this document can be specified in a
document of its own not tied to a particular implementation; [Precision Decimal] is an example of such a document.

For all other datatypes, a Simple Type Definition does suffice. The properties of an ·ordinary· datatype can be inferred from the
datatype's Simple Type Definition and the properties of the ·base type·, ·item type· if any, and ·member types· if any. All
·ordinary· datatypes can be defined in this way.

By 'derivation' is meant the relation of a datatype to its ·base type·, or to the ·base type· of its ·base type·, and so on.

Every datatype other than anySimpleType is associated with another datatype, its base type. Base types can be ·special·,
·primitive·, or ·ordinary·.

[Definition:] A datatype T is immediately derived from another datatype X if and only if X is the ·base type· of T.

Note: The above does not preclude the Simple Type Definition for anySimpleType from having a value for its {base type
definition}. (It does, and its value is anyType.)

More generally,
A datatype R is derived from another datatype B if and only if one of the following is true:

B is the ·base type· of R.

There is some datatype X such that X is the ·base type· of R, and X is derived from B.

A datatype ���� ��� be ·derived· from itself. That is, the base type relation must be acyclic.

It is a consequence of the above that every datatype other than anySimpleType is ·derived· from anySimpleType.

Since each datatype has exactly one ·base type·, and every datatype other than anySimpleType is ·derived· directly or
indirectly from anySimpleType, it follows that the ·base type· relation arranges all simple types into a tree structure, which is
conventionally referred to as the derivation hierarchy.

By 'restriction' is meant the definition of a datatype whose ·value space· and ·lexical space· are subsets of those of its ·base
type·.

Formally, A datatype R is a restriction of another datatype B when

the ·value space· of R is a subset of the ·value space· of B, and

the ·lexical space· of R is a subset of the ·lexical space· of B.

Note that all three forms of datatype ·construction· produce ·restrictions· of the ·base type·: ·facet-based restriction· does so by
means of ·constraining facets·, while ·construction· by ·list· or ·union· does so because those ·constructions· take
anySimpleType as the ·base type·. It follows that all datatypes are ·restrictions· of anySimpleType. This specification provides
no means by which a datatype may be defined so as to have a larger ·lexical space· or ·value space· than its ·base type·.

By 'construction' is meant the creation of a datatype by defining it in terms of another.

[Definition:] All ·ordinary· datatypes are defined in terms of, or constructed from, other datatypes, either by ·restricting· the
·value space· or ·lexical space· of a ·base type· using zero or more ·constraining facets· or by specifying the new datatype as a
·list· of items of some ·item type·, or by defining it as a ·union· of some specified sequence of ·member types·. These three
forms of ·construction· are often called "·facet-based restriction·", "·construction· by ·list·", and "·construction· by ·union·",
respectively. Datatypes so constructed may be understood fully (for purposes of a type system) in terms of (a) the properties of
the datatype(s) from which they are constructed, and (b) their Simple Type Definition. This distinguishes ·ordinary· datatypes
from the ·special· and ·primitive· datatypes, which can be understood only in the light of documentation (namely, their
descriptions elsewhere in this specification, or, for ·implementation-defined· ·primitives·, in the appropriate implementation-
specific documentation). All ·ordinary· datatypes are ·constructed·, and all ·constructed· datatypes are ·ordinary·.

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

15 of 171 03/07/2021, 05:45

2.4.4 Built-in vs. User-Defined Datatypes

[Definition:] Built-in datatypes are those which are defined in this specification; they can be ·special·, ·primitive·, or
·ordinary· datatypes .

[Definition:] User-defined datatypes are those datatypes that are defined by individual schema designers.

The ·built-in· datatypes are intended to be available automatically whenever this specification is implemented or used, whether
by itself or embedded in a host language. In the language defined by [XSD 1.1 Part 1: Structures], the ·built-in· datatypes are
automatically included in every valid schema. Other host languages ������ specify that all of the datatypes decribed here as
built-ins are automatically available; they ��� specify that additional datatypes are also made available automatically.

Note: ·Implementation-defined· datatypes, whether ·primitive· or ·ordinary·, may sometimes be included automatically in
any schemas processed by that implementation; nevertheless, they are not built in to every schema, and are thus not
included in the term 'built-in', as that term is used in this specification.

The mechanism for making ·user-defined· datatypes available for use is not defined in this specification; if ·user-defined·
datatypes are to be available, some such mechanism ���� be specified by the host language.

[Definition:] A datatype which is not available for use is said to be unknown.

Note: From the schema author's perspective, a reference to a datatype which proves to be ·unknown· might reflect any of
the following causes, or others:
1 An error has been made in giving the name of the datatype.
2 The datatype is a ·user-defined· datatype which has not been made available using the means defined by the host

language (e.g. because the appropriate schema document has not been consulted).
3 The datatype is an ·implementation-defined· ·primitive· datatype not supported by the implementation being used.
4 The datatype is an ·implementation-defined· ·ordinary· datatype which is made automatically available by some

implementations, but not by the implementation being used.
5 The datatype is a ·user-defined· ·ordinary· datatype whose base type is ·unknown·
From the point of view of the implementation, these cases are likely to be indistinguishable.

Note: In the terminology of [XSD 1.1 Part 1: Structures], the datatypes here called ·unknown· are referred to as absent.

Conceptually there is no difference between the ·ordinary· ·built-in· datatypes included in this specification and the ·user-
defined· datatypes which will be created by individual schema designers. The ·built-in· ·constructed· datatypes are those which
are believed to be so common that if they were not defined in this specification many schema designers would end up
reinventing them. Furthermore, including these ·constructed· datatypes in this specification serves to demonstrate the
mechanics and utility of the datatype generation facilities of this specification.

3 Built-in Datatypes and Their Definitions

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

16 of 171 03/07/2021, 05:45

Diagram showing the derivation relations in the built-in type hierarchy. (A long description of the diagram is available
separately.)

Each built-in datatype defined in this specification can be uniquely addressed via a URI Reference constructed as follows:

1. the base URI is the URI of the XML Schema namespace

2. the fragment identifier is the name of the datatype

For example, to address the int datatype, the URI is:

http://www.w3.org/2001/XMLSchema#int

anyType

all complex types

anySimpleType

anyAtomicType

anyURI

base64Binary

boolean

date

dateTime

dateTimeStamp

decimal

integer

long

int

short

byte

nonNegativeInteger

positiveInteger

unsignedLong

unsignedInt

unsignedShort

unsignedByte

nonPositiveInteger

negativeInteger

double

duration

dayTimeDuration

yearMonthDuration

float

gDay

gMonth

gMonthDay

gYear

gYearMonth

hexBinary

NOTATION

QName

string

normalizedString

token

language

Name

NCName

ENTITY

ID

IDREF

NMTOKEN

time

ENTITIES

IDREFS

NMTOKENS

Key

Special types

Primitive types

Other built-in atomic types

Built-in list types

Complex types

T2 is derived from T1

anySimpleType

anyURI

dateTimeStamp

ENTITIES

all complex types

T1

T2

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

17 of 171 03/07/2021, 05:45

Additionally, each facet definition element can be uniquely addressed via a URI constructed as follows:

1. the base URI is the URI of the XML Schema namespace

2. the fragment identifier is the name of the facet

For example, to address the maxInclusive facet, the URI is:

http://www.w3.org/2001/XMLSchema#maxInclusive

Additionally, each facet usage in a built-in Simple Type Definition can be uniquely addressed via a URI constructed as follows:

1. the base URI is the URI of the XML Schema namespace

2. the fragment identifier is the name of the Simple Type Definition, followed by a period ('.') followed by the name of the
facet

For example, to address the usage of the maxInclusive facet in the definition of int, the URI is:

http://www.w3.org/2001/XMLSchema#int.maxInclusive

3.1 Namespace considerations

The ·built-in· datatypes defined by this specification are designed to be used with the XML Schema definition language as well
as other XML specifications. To facilitate usage within the XML Schema definition language, the ·built-in· datatypes in this
specification have the namespace name:

http://www.w3.org/2001/XMLSchema

To facilitate usage in specifications other than the XML Schema definition language, such as those that do not want to know
anything about aspects of the XML Schema definition language other than the datatypes, each ·built-in· datatype is also
defined in the namespace whose URI is:

http://www.w3.org/2001/XMLSchema-datatypes

Each ·user-defined· datatype may also be associated with a target namespace. If it is constructed from a schema document,
then its namespace is typically the target namespace of that schema document. (See XML Representation of Schemas in [XSD
1.1 Part 1: Structures].)

3.2 Special Built-in Datatypes
 3.2.1 anySimpleType
 3.2.1.1 Value space
 3.2.1.2 Lexical mapping
 3.2.1.3 Facets
 3.2.2 anyAtomicType
 3.2.2.1 Value space
 3.2.2.2 Lexical mapping
 3.2.2.3 Facets

The two datatypes at the root of the hierarchy of simple types are anySimpleType and anyAtomicType.

3.2.1 anySimpleType

The definition of anySimpleType is a special ·restriction· of anyType. The ·lexical space· of anySimpleType is the set of all
sequences of Unicode characters, and its ·value space· includes all ·atomic values· and all finite-length lists of zero or more
·atomic values·.

For further details of anySimpleType and its representation as a Simple Type Definition, see Built-in Simple Type Definitions
(§4.1.6).

3.2.1.1 Value space

The ·value space· of anySimpleType is the set of all ·atomic values· and of all finite-length lists of zero or more ·atomic values·.

Note: It is a consequence of this definition, together with the definition of the ·lexical mapping· in the next section, that
some values of this datatype have no ·lexical representation· using the ·lexical mappings· defined by this specification.
That is, the "potential" ·value space· and the "effable" or "nameable" ·value space· diverge for this datatype. As far as this
specification is concerned, there is no operational difference between the potential and effable ·value spaces· and the
distinction is of mostly formal interest. Since some host languages for the type system defined here may allow means of
construction values other than mapping from a ·lexical representation·, the difference may have practical importance in
some contexts. In those contexts, the term ·value space· should unless otherwise qualified be taken to mean the potential

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

18 of 171 03/07/2021, 05:45

·value space·.

3.2.1.2 Lexical mapping

The ·lexical space· of anySimpleType is the set of all finite-length sequences of zero or more characters (as defined in [XML])
that ·match· the Char production from [XML]. This is equivalent to the union of the ·lexical spaces· of all ·primitive· and all
possible ·ordinary· datatypes.

It is ·implementation-defined· whether an implementation of this specification supports the Char production from [XML], or that
from [XML 1.0], or both. See Dependencies on Other Specifications (§1.3).

The ·lexical mapping· of anySimpleType is the union of the ·lexical mappings· of all ·primitive· datatypes and all list datatypes.
It will be noted that this mapping is not a function: a given ·literal· may map to one value or to several values of different
·primitive· datatypes, and it may be indeterminate which value is to be preferred in a particular context. When the datatypes
defined here are used in the context of [XSD 1.1 Part 1: Structures], the xsi:type attribute defined by that specification in
section xsi:type can be used to indicate which value a ·literal· which is the content of an element should map to. In other
contexts, other rules (such as type coercion rules) may be employed to determine which value is to be used.

3.2.1.3 Facets

When a new datatype is defined by ·facet-based restriction·, anySimpleType ���� ��� be used as the ·base type·. So no
·constraining facets· are directly applicable to anySimpleType.

3.2.2 anyAtomicType

[Definition:] anyAtomicType is a special ·restriction· of anySimpleType. The ·value· and ·lexical spaces· of anyAtomicType
are the unions of the ·value· and ·lexical spaces· of all the ·primitive· datatypes, and anyAtomicType is their ·base type·.

For further details of anyAtomicType and its representation as a Simple Type Definition, see Built-in Simple Type Definitions
(§4.1.6).

3.2.2.1 Value space

The ·value space· of anyAtomicType is the union of the ·value spaces· of all the ·primitive· datatypes defined here or supplied
as ·implementation-defined· ·primitives·.

3.2.2.2 Lexical mapping

The ·lexical space· of anyAtomicType is the set of all finite-length sequences of zero or more characters (as defined in [XML])
that ·match· the Char production from [XML]. This is equivalent to the union of the ·lexical spaces· of all ·primitive· datatypes.

It is ·implementation-defined· whether an implementation of this specification supports the Char production from [XML], or that
from [XML 1.0], or both. See Dependencies on Other Specifications (§1.3).

The ·lexical mapping· of anyAtomicType is the union of the ·lexical mappings· of all ·primitive· datatypes. It will be noted that
this mapping is not a function: a given ·literal· may map to one value or to several values of different ·primitive· datatypes, and
it may be indeterminate which value is to be preferred in a particular context. When the datatypes defined here are used in the
context of [XSD 1.1 Part 1: Structures], the xsi:type attribute defined by that specification in section xsi:type can be used to
indicate which value a ·literal· which is the content of an element should map to. In other contexts, other rules (such as type
coercion rules) may be employed to determine which value is to be used.

3.2.2.3 Facets

When a new datatype is defined by ·facet-based restriction·, anyAtomicType ���� ��� be used as the ·base type·. So no
·constraining facets· are directly applicable to anyAtomicType.

3.3 Primitive Datatypes
 3.3.1 string
 3.3.1.1 Value Space
 3.3.1.2 Lexical Mapping
 3.3.1.3 Facets
 3.3.1.4 Derived datatypes
 3.3.2 boolean
 3.3.2.1 Value Space
 3.3.2.2 Lexical Mapping
 3.3.2.3 Facets

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

19 of 171 03/07/2021, 05:45

 3.3.3 decimal
 3.3.3.1 Lexical Mapping
 3.3.3.2 Facets
 3.3.3.3 Datatypes based on decimal
 3.3.4 float
 3.3.4.1 Value Space
 3.3.4.2 Lexical Mapping
 3.3.4.3 Facets
 3.3.5 double
 3.3.5.1 Value Space
 3.3.5.2 Lexical Mapping
 3.3.5.3 Facets
 3.3.6 duration
 3.3.6.1 Value Space
 3.3.6.2 Lexical Mapping
 3.3.6.3 Facets
 3.3.6.4 Related Datatypes
 3.3.7 dateTime
 3.3.7.1 Value Space
 3.3.7.2 Lexical Mapping
 3.3.7.3 Facets
 3.3.7.4 Related Datatypes
 3.3.8 time
 3.3.8.1 Value Space
 3.3.8.2 Lexical Mappings
 3.3.8.3 Facets
 3.3.9 date
 3.3.9.1 Value Space
 3.3.9.2 Lexical Mapping
 3.3.9.3 Facets
 3.3.10 gYearMonth
 3.3.10.1 Value Space
 3.3.10.2 Lexical Mapping
 3.3.10.3 Facets
 3.3.11 gYear
 3.3.11.1 Value Space
 3.3.11.2 Lexical Mapping
 3.3.11.3 Facets
 3.3.12 gMonthDay
 3.3.12.1 Value Space
 3.3.12.2 Lexical Mapping
 3.3.12.3 Facets
 3.3.13 gDay
 3.3.13.1 Value Space
 3.3.13.2 Lexical Mapping
 3.3.13.3 Facets
 3.3.14 gMonth
 3.3.14.1 Value Space
 3.3.14.2 Lexical Mapping
 3.3.14.3 Facets
 3.3.15 hexBinary
 3.3.15.1 Value Space
 3.3.15.2 Lexical Mapping
 3.3.15.3 Facets
 3.3.16 base64Binary
 3.3.16.1 Value Space
 3.3.16.2 Lexical Mapping
 3.3.16.3 Facets
 3.3.17 anyURI
 3.3.17.1 Value Space
 3.3.17.2 Lexical Mapping
 3.3.17.3 Facets
 3.3.18 QName
 3.3.18.1 Facets
 3.3.19 NOTATION
 3.3.19.1 Facets

The ·primitive· datatypes defined by this specification are described below. For each datatype, the ·value space· is described;
the ·lexical space· is defined using an extended Backus Naur Format grammar (and in most cases also a regular expression
using the regular expression language of Regular Expressions (§G)); ·constraining facets· which apply to the datatype are

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

20 of 171 03/07/2021, 05:45

listed; and any datatypes ·constructed· from this datatype are specified.

Conforming processors ���� support the ·primitive· datatypes defined in this specification; it is ·implementation-defined·
whether they support others. ·Primitive· datatypes may be added by revisions to this specification.

Note: Processors ���, for example, support the floating-point decimal datatype specified in [Precision Decimal].

3.3.1 string

[Definition:] The string datatype represents character strings in XML.

Note: Many human languages have writing systems that require child elements for control of aspects such as bidirectional
formatting or ruby annotation (see [Ruby] and Section 8.2.4 Overriding the bidirectional algorithm: the BDO element of
[HTML 4.01]). Thus, string, as a simple type that can contain only characters but not child elements, is often not suitable
for representing text. In such situations, a complex type that allows mixed content should be considered. For more
information, see Section 5.5 Any Element, Any Attribute of [XML Schema Language: Part 0 Primer].

3.3.1.1 Value Space

The ·value space· of string is the set of finite-length sequences of zero or more characters (as defined in [XML]) that ·match·
the Char production from [XML]. A character is an atomic unit of communication; it is not further specified except to note that
every character has a corresponding Universal Character Set (UCS) code point, which is an integer.

It is ·implementation-defined· whether an implementation of this specification supports the Char production from [XML], or that
from [XML 1.0], or both. See Dependencies on Other Specifications (§1.3).

Equality for string is identity. No order is prescribed.

Note: As noted in ordered, the fact that this specification does not specify an order relation for ·string· does not preclude
other applications from treating strings as being ordered.

3.3.1.2 Lexical Mapping

The ·lexical space· of string is the set of finite-length sequences of zero or more characters (as defined in [XML]) that ·match·
the Char production from [XML].

Lexical Space

[1] stringRep ::= Char*
/* (as defined in [XML]) */

It is ·implementation-defined· whether an implementation of this specification supports the Char production from [XML], or that
from [XML 1.0], or both. See Dependencies on Other Specifications (§1.3).

The ·lexical mapping· for string is ·stringLexicalMap·, and the ·canonical mapping· is ·stringCanonicalMap·; each is a subset of
the identity function.

3.3.1.3 Facets

The string datatype has the following ·constraining facets· with the values shown; these facets ��� be specified in the
derivation of new types, if the value given is at least as restrictive as the one shown:

whiteSpace = preserve

Datatypes derived by restriction from string ��� also specify values for the following ·constraining facets·:

length
minLength
maxLength
pattern
enumeration
assertions

The string datatype has the following values for its ·fundamental facets·:

ordered = false
bounded = false

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

21 of 171 03/07/2021, 05:45

cardinality = countably infinite
numeric = false

3.3.1.4 Derived datatypes

The following ·built-in· datatype is ·derived· from string

normalizedString

3.3.2 boolean

[Definition:] boolean represents the values of two-valued logic.

3.3.2.1 Value Space

boolean has the ·value space· of two-valued logic: {true, false}.

3.3.2.2 Lexical Mapping

boolean's lexical space is a set of four ·literals·:

Lexical Space

[2] booleanRep ::= 'true' | 'false' | '1' | '0'

The ·lexical mapping· for boolean is ·booleanLexicalMap·; the ·canonical mapping· is ·booleanCanonicalMap·.

3.3.2.3 Facets

The boolean datatype and all datatypes derived from it by restriction have the following ·constraining facets· with fixed values;
these facets ���� ��� be changed from the values shown:

whiteSpace = collapse (fixed)

Datatypes derived by restriction from boolean ��� also specify values for the following ·constraining facets·:

pattern
assertions

The boolean datatype has the following values for its ·fundamental facets·:

ordered = false
bounded = false
cardinality = finite
numeric = false

3.3.3 decimal

[Definition:] decimal represents a subset of the real numbers, which can be represented by decimal numerals. The ·value
space· of decimal is the set of numbers that can be obtained by dividing an integer by a non-negative power of ten, i.e.,
expressible as i / 10n where i and n are integers and n ≥ 0. Precision is not reflected in this value space; the number 2.0 is not
distinct from the number 2.00. The order relation on decimal is the order relation on real numbers, restricted to this subset.

Note: For a decimal datatype whose values do reflect precision, see [Precision Decimal].

3.3.3.1 Lexical Mapping

decimal has a lexical representation consisting of a non-empty finite-length sequence of decimal digits (#x30–#x39) separated
by a period as a decimal indicator. An optional leading sign is allowed. If the sign is omitted, "+" is assumed. Leading and
trailing zeroes are optional. If the fractional part is zero, the period and following zero(es) can be omitted. For example: '-1.23',
'12678967.543233', '+100000.00', '210'.

The decimal Lexical Representation

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

22 of 171 03/07/2021, 05:45

[3] decimalLexicalRep ::= decimalPtNumeral | noDecimalPtNumeral

The lexical space of decimal is the set of lexical representations which match the grammar given above, or (equivalently) the
regular expression

(\+|-)?([0-9]+(\.[0-9]*)?|\.[0-9]+)

The mapping from lexical representations to values is the usual one for decimal numerals; it is given formally in
·decimalLexicalMap·.

The definition of the ·canonical representation· has the effect of prohibiting certain options from the Lexical Mapping (§3.3.3.1).
Specifically, for integers, the decimal point and fractional part are prohibited. For other values, the preceding optional "+" sign is
prohibited. The decimal point is required. In all cases, leading and trailing zeroes are prohibited subject to the following: there
���� be at least one digit to the right and to the left of the decimal point which may be a zero.

The mapping from values to ·canonical representations· is given formally in ·decimalCanonicalMap·.

3.3.3.2 Facets

The decimal datatype and all datatypes derived from it by restriction have the following ·constraining facets· with fixed values;
these facets ���� ��� be changed from the values shown:

whiteSpace = collapse (fixed)

Datatypes derived by restriction from decimal ��� also specify values for the following ·constraining facets·:

totalDigits
fractionDigits
pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive
assertions

The decimal datatype has the following values for its ·fundamental facets·:

ordered = total
bounded = false
cardinality = countably infinite
numeric = true

3.3.3.3 Datatypes based on decimal

The following ·built-in· datatype is ·derived· from decimal

integer

3.3.4 float

[Definition:] The float datatype is patterned after the IEEE single-precision 32-bit floating point datatype [IEEE 754-2008]. Its
value space is a subset of the rational numbers. Floating point numbers are often used to approximate arbitrary real numbers.

3.3.4.1 Value Space

The ·value space· of float contains the non-zero numbers m × 2e , where m is an integer whose absolute value is less than
224, and e is an integer between −149 and 104, inclusive. In addition to these values, the ·value space· of float also contains
the following ·special values·: positiveZero, negativeZero, positiveInfinity, negativeInfinity, and notANumber.

Note: As explained below, the ·lexical representation· of the float value notANumber is 'NaN'. Accordingly, in English text
we generally use 'NaN' to refer to that value. Similarly, we use 'INF' and '−INF' to refer to the two values positiveInfinity
and negativeInfinity, and '0' and '−0' to refer to positiveZero and negativeZero.

Equality and order for float are defined as follows:

Equality is identity, except that 0 = −0 (although they are not identical) and NaN ≠ NaN (although NaN is of course
identical to itself).

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

23 of 171 03/07/2021, 05:45

0 and −0 are thus equivalent for purposes of enumerations and identity constraints, as well as for minimum and maximum
values.

For the basic values, the order relation on float is the order relation for rational numbers. INF is greater than all other
non-NaN values; −INF is less than all other non-NaN values. NaN is ·incomparable· with any value in the ·value space·
including itself. 0 and −0 are greater than all the negative numbers and less than all the positive numbers.

Note: Any value ·incomparable· with the value used for the four bounding facets (·minInclusive·, ·maxInclusive·,
·minExclusive·, and ·maxExclusive·) will be excluded from the resulting restricted ·value space·. In particular, when NaN
is used as a facet value for a bounding facet, since no float values are ·comparable· with it, the result is a ·value space·
that is empty. If any other value is used for a bounding facet, NaN will be excluded from the resulting restricted ·value
space·; to add NaN back in requires union with the NaN-only space (which may be derived using the pattern 'NaN').

Note: The Schema 1.0 version of this datatype did not differentiate between 0 and −0 and NaN was equal to itself. The
changes were made to make the datatype more closely mirror [IEEE 754-2008].

3.3.4.2 Lexical Mapping

The ·lexical space· of float is the set of all decimal numerals with or without a decimal point, numerals in scientific (exponential)
notation, and the ·literals· 'INF', '+INF', '-INF', and 'NaN'

Lexical Space

[4] floatRep ::= noDecimalPtNumeral | decimalPtNumeral | scientificNotationNumeral | numericalSpecialRep

The floatRep production is equivalent to this regular expression (after whitespace is removed from the regular expression):

(\+|-)?([0-9]+(\.[0-9]*)?|\.[0-9]+)([Ee](\+|-)?[0-9]+)?
|(\+|-)?INF|NaN

The float datatype is designed to implement for schema processing the single-precision floating-point datatype of [IEEE
754-2008]. That specification does not specify specific ·lexical representations·, but does prescribe requirements on any
·lexical mapping· used. Any ·lexical mapping· that maps the ·lexical space· just described onto the ·value space·, is a function,
satisfies the requirements of [IEEE 754-2008], and correctly handles the mapping of the literals 'INF', 'NaN', etc., to the ·special
values·, satisfies the conformance requirements of this specification.

Since IEEE allows some variation in rounding of values, processors conforming to this specification may exhibit some variation
in their ·lexical mappings·.

The ·lexical mapping· ·floatLexicalMap· is provided as an example of a simple algorithm that yields a conformant mapping, and
that provides the most accurate rounding possible—and is thus useful for insuring inter-implementation reproducibility and
inter-implementation round-tripping. The simple rounding algorithm used in ·floatLexicalMap· may be more efficiently
implemented using the algorithms of [Clinger, WD (1990)].

Note: The Schema 1.0 version of this datatype did not permit rounding algorithms whose results differed from [Clinger, WD
(1990)].

The ·canonical mapping· ·floatCanonicalMap· is provided as an example of a mapping that does not produce unnecessarily
long ·canonical representations·. Other algorithms which do not yield identical results for mapping from float values to
character strings are permitted by [IEEE 754-2008].

3.3.4.3 Facets

The float datatype and all datatypes derived from it by restriction have the following ·constraining facets· with fixed values;
these facets ���� ��� be changed from the values shown:

whiteSpace = collapse (fixed)

Datatypes derived by restriction from float ��� also specify values for the following ·constraining facets·:

pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive
assertions

The float datatype has the following values for its ·fundamental facets·:

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

24 of 171 03/07/2021, 05:45

ordered = partial
bounded = true
cardinality = finite
numeric = true

3.3.5 double

[Definition:] The double datatype is patterned after the IEEE double-precision 64-bit floating point datatype [IEEE 754-2008].
Each floating point datatype has a value space that is a subset of the rational numbers. Floating point numbers are often used
to approximate arbitrary real numbers.

Note: The only significant differences between float and double are the three defining constants 53 (vs 24), −1074 (vs
−149), and 971 (vs 104).

3.3.5.1 Value Space

The ·value space· of double contains the non-zero numbers m × 2e , where m is an integer whose absolute value is less than
253, and e is an integer between −1074 and 971, inclusive. In addition to these values, the ·value space· of double also
contains the following ·special values·: positiveZero, negativeZero, positiveInfinity, negativeInfinity, and notANumber.

Note: As explained below, the ·lexical representation· of the double value notANumber is 'NaN'. Accordingly, in English
text we generally use 'NaN' to refer to that value. Similarly, we use 'INF' and '−INF' to refer to the two values
positiveInfinity and negativeInfinity, and '0' and '−0' to refer to positiveZero and negativeZero.

Equality and order for double are defined as follows:

Equality is identity, except that 0 = −0 (although they are not identical) and NaN ≠ NaN (although NaN is of course
identical to itself).

0 and −0 are thus equivalent for purposes of enumerations, identity constraints, and minimum and maximum values.

For the basic values, the order relation on double is the order relation for rational numbers. INF is greater than all other
non-NaN values; −INF is less than all other non-NaN values. NaN is ·incomparable· with any value in the ·value space·
including itself. 0 and −0 are greater than all the negative numbers and less than all the positive numbers.

Note: Any value ·incomparable· with the value used for the four bounding facets (·minInclusive·, ·maxInclusive·,
·minExclusive·, and ·maxExclusive·) will be excluded from the resulting restricted ·value space·. In particular, when NaN
is used as a facet value for a bounding facet, since no double values are ·comparable· with it, the result is a ·value space·
that is empty. If any other value is used for a bounding facet, NaN will be excluded from the resulting restricted ·value
space·; to add NaN back in requires union with the NaN-only space (which may be derived using the pattern 'NaN').

Note: The Schema 1.0 version of this datatype did not differentiate between 0 and −0 and NaN was equal to itself. The
changes were made to make the datatype more closely mirror [IEEE 754-2008].

3.3.5.2 Lexical Mapping

The ·lexical space· of double is the set of all decimal numerals with or without a decimal point, numerals in scientific
(exponential) notation, and the ·literals· 'INF', '+INF', '-INF', and 'NaN'

Lexical Space

[5] doubleRep ::= noDecimalPtNumeral | decimalPtNumeral | scientificNotationNumeral | numericalSpecialRep

The doubleRep production is equivalent to this regular expression (after whitespace is eliminated from the expression):

(\+|-)?([0-9]+(\.[0-9]*)?|\.[0-9]+)([Ee](\+|-)?[0-9]+)? |(\+|-)?INF|NaN

The double datatype is designed to implement for schema processing the double-precision floating-point datatype of [IEEE
754-2008]. That specification does not specify specific ·lexical representations·, but does prescribe requirements on any
·lexical mapping· used. Any ·lexical mapping· that maps the ·lexical space· just described onto the ·value space·, is a function,
satisfies the requirements of [IEEE 754-2008], and correctly handles the mapping of the literals 'INF', 'NaN', etc., to the ·special
values·, satisfies the conformance requirements of this specification.

Since IEEE allows some variation in rounding of values, processors conforming to this specification may exhibit some variation
in their ·lexical mappings·.

The ·lexical mapping· ·doubleLexicalMap· is provided as an example of a simple algorithm that yields a conformant mapping,
and that provides the most accurate rounding possible—and is thus useful for insuring inter-implementation reproducibility and
inter-implementation round-tripping. The simple rounding algorithm used in ·doubleLexicalMap· may be more efficiently

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

25 of 171 03/07/2021, 05:45

implemented using the algorithms of [Clinger, WD (1990)].

Note: The Schema 1.0 version of this datatype did not permit rounding algorithms whose results differed from [Clinger, WD
(1990)].

The ·canonical mapping· ·doubleCanonicalMap· is provided as an example of a mapping that does not produce unnecessarily
long ·canonical representations·. Other algorithms which do not yield identical results for mapping from float values to
character strings are permitted by [IEEE 754-2008].

3.3.5.3 Facets

The double datatype and all datatypes derived from it by restriction have the following ·constraining facets· with fixed values;
these facets ���� ��� be changed from the values shown:

whiteSpace = collapse (fixed)

Datatypes derived by restriction from double ��� also specify values for the following ·constraining facets·:

pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive
assertions

The double datatype has the following values for its ·fundamental facets·:

ordered = partial
bounded = true
cardinality = finite
numeric = true

3.3.6 duration

[Definition:] duration is a datatype that represents durations of time. The concept of duration being captured is drawn from
those of [ISO 8601], specifically durations without fixed endpoints. For example, "15 days" (whose most common lexical
representation in duration is "'P15D'") is a duration value; "15 days beginning 12 July 1995" and "15 days ending 12 July 1995"
are not duration values. duration can provide addition and subtraction operations between duration values and between
duration/dateTime value pairs, and can be the result of subtracting dateTime values. However, only addition to dateTime is
required for XML Schema processing and is defined in the function ·dateTimePlusDuration·.

3.3.6.1 Value Space

Duration values can be modelled as two-property tuples. Each value consists of an integer number of months and a decimal
number of seconds. The ·seconds· value ���� ��� be negative if the ·months· value is positive and ���� ��� be positive if
the ·months· is negative.

Properties of duration Values

·months·

integer

·seconds·

a decimal value; ���� ��� be negative if ·months· is positive, and ���� ��� be positive if ·months· is negative.

duration is partially ordered. Equality of duration is defined in terms of equality of dateTime; order for duration is defined in
terms of the order of dateTime. Specifically, the equality or order of two duration values is determined by adding each duration
in the pair to each of the following four dateTime values:

1696-09-01T00:00:00Z

1697-02-01T00:00:00Z

1903-03-01T00:00:00Z

1903-07-01T00:00:00Z

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

26 of 171 03/07/2021, 05:45

If all four resulting dateTime value pairs are ordered the same way (less than, equal, or greater than), then the original pair of
duration values is ordered the same way; otherwise the original pair is ·incomparable·.

Note: These four values are chosen so as to maximize the possible differences in results that could occur, such as the
difference when adding P1M and P30D: 1697-02-01T00:00:00Z + P1M < 1697-02-01T00:00:00Z + P30D , but
1903-03-01T00:00:00Z + P1M > 1903-03-01T00:00:00Z + P30D , so that P1M <> P30D . If two duration values are
ordered the same way when added to each of these four dateTime values, they will retain the same order when added to
any other dateTime values. Therefore, two duration values are incomparable if and only if they can ever result in different
orders when added to any dateTime value.

Under the definition just given, two duration values are equal if and only if they are identical.

Note: Two totally ordered datatypes (yearMonthDuration and dayTimeDuration) are derived from duration in Other Built-in
Datatypes (§3.4).

Note: There are many ways to implement duration, some of which do not base the implementation on the two-component
model. This specification does not prescribe any particular implementation, as long as the visible results are isomorphic to
those described herein.

Note: See the conformance notes in Partial Implementation of Infinite Datatypes (§5.4), which apply to this datatype.

3.3.6.2 Lexical Mapping

The ·lexical representations· of duration are more or less based on the pattern:

PnYnMnDTnHnMnS

More precisely, the ·lexical space· of duration is the set of character strings that satisfy durationLexicalRep as defined by the
following productions:

Lexical Representation Fragments

[6] duYearFrag ::= unsignedNoDecimalPtNumeral 'Y'

[7] duMonthFrag ::= unsignedNoDecimalPtNumeral 'M'

[8] duDayFrag ::= unsignedNoDecimalPtNumeral 'D'

[9] duHourFrag ::= unsignedNoDecimalPtNumeral 'H'

[10] duMinuteFrag ::= unsignedNoDecimalPtNumeral 'M'

[11] duSecondFrag ::= (unsignedNoDecimalPtNumeral | unsignedDecimalPtNumeral) 'S'

[12] duYearMonthFrag ::= (duYearFrag duMonthFrag?) | duMonthFrag

[13] duTimeFrag ::= 'T' ((duHourFrag duMinuteFrag? duSecondFrag?) | (duMinuteFrag duSecondFrag?) |
duSecondFrag)

[14] duDayTimeFrag ::= (duDayFrag duTimeFrag?) | duTimeFrag

Lexical Representation

[15] durationLexicalRep ::= '-'? 'P' ((duYearMonthFrag duDayTimeFrag?) | duDayTimeFrag)

Thus, a durationLexicalRep consists of one or more of a duYearFrag, duMonthFrag, duDayFrag, duHourFrag, duMinuteFrag,
and/or duSecondFrag, in order, with letters 'P' and 'T' (and perhaps a '-') where appropriate.

The language accepted by the durationLexicalRep production is the set of strings which satisfy all of the following three regular
expressions:

The expression

-?P[0-9]+Y?([0-9]+M)?([0-9]+D)?(T([0-9]+H)?([0-9]+M)?([0-9]+(\.[0-9]+)?S)?)?

matches only strings in which the fields occur in the proper order.

The expression '.*[YMDHS].*' matches only strings in which at least one field occurs.

The expression '.*[^T]' matches only strings in which 'T' is not the final character, so that if 'T' appears, something follows

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

27 of 171 03/07/2021, 05:45

it. The first rule ensures that what follows 'T' will be an hour, minute, or second field.

The intersection of these three regular expressions is equivalent to the following (after removal of the white space inserted here
for legibility):

-?P((([0-9]+Y([0-9]+M)?([0-9]+D)?
 | ([0-9]+M)([0-9]+D)?
 | ([0-9]+D)
)
 (T (([0-9]+H)([0-9]+M)?([0-9]+(\.[0-9]+)?S)?
 | ([0-9]+M)([0-9]+(\.[0-9]+)?S)?
 | ([0-9]+(\.[0-9]+)?S)
)
)?
)
 | (T (([0-9]+H)([0-9]+M)?([0-9]+(\.[0-9]+)?S)?
 | ([0-9]+M)([0-9]+(\.[0-9]+)?S)?
 | ([0-9]+(\.[0-9]+)?S)
)
)
)

The ·lexical mapping· for duration is ·durationMap·.

·The canonical mapping· for duration is ·durationCanonicalMap·.

3.3.6.3 Facets

The duration datatype and all datatypes derived from it by restriction have the following ·constraining facets· with fixed values;
these facets ���� ��� be changed from the values shown:

whiteSpace = collapse (fixed)

Datatypes derived by restriction from duration ��� also specify values for the following ·constraining facets·:

pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive
assertions

The duration datatype has the following values for its ·fundamental facets·:

ordered = partial
bounded = false
cardinality = countably infinite
numeric = false

3.3.6.4 Related Datatypes

The following ·built-in· datatypes are ·derived· from duration

yearMonthDuration
dayTimeDuration

3.3.7 dateTime

dateTime represents instants of time, optionally marked with a particular time zone offset. Values representing the same
instant but having different time zone offsets are equal but not identical.

3.3.7.1 Value Space

dateTime uses the date/timeSevenPropertyModel, with no properties except ·timezoneOffset· permitted to be absent. The
·timezoneOffset· property remains ·optional·.

Note: In version 1.0 of this specification, the ·year· property was not permitted to have the value zero. The year before the
year 1 in the proleptic Gregorian calendar, traditionally referred to as 1 BC or as 1 BCE, was represented by a ·year· value
of −1, 2 BCE by −2, and so forth. Of course, many, perhaps most, references to 1 BCE (or 1 BC) actually refer not to a
year in the proleptic Gregorian calendar but to a year in the Julian or "old style" calendar; the two correspond
approximately but not exactly to each other.

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

28 of 171 03/07/2021, 05:45

In this version of this specification, two changes are made in order to agree with existing usage. First, ·year· is permitted to
have the value zero. Second, the interpretation of ·year· values is changed accordingly: a ·year· value of zero represents 1
BCE, −1 represents 2 BCE, etc. This representation simplifies interval arithmetic and leap-year calculation for dates before
the common era (which may be why astronomers and others interested in such calculations with the proleptic Gregorian
calendar have adopted it), and is consistent with the current edition of [ISO 8601].

Note that 1 BCE, 5 BCE, and so on (years 0000, -0004, etc. in the lexical representation defined here) are leap years in
the proleptic Gregorian calendar used for the date/time datatypes defined here. Version 1.0 of this specification was
unclear about the treatment of leap years before the common era. If existing schemas or data specify dates of 29 February
for any years before the common era, then some values giving a date of 29 February which were valid under a plausible
interpretation of XSD 1.0 will be invalid under this specification, and some which were invalid will be valid. With that
possible exception, schemas and data valid under the old interpretation remain valid under the new.

Constraint: Day-of-month Values

The ·day· value ���� be no more than 30 if ·month· is one of 4, 6, 9, or 11; no more than 28 if ·month· is 2 and ·year· is not
divisible by 4, or is divisible by 100 but not by 400; and no more than 29 if ·month· is 2 and ·year· is divisible by 400, or by 4
but not by 100.

Note: See the conformance note in Partial Implementation of Infinite Datatypes (§5.4) which applies to the ·year· and
·second· values of this datatype.

Equality and order are as prescribed in The Seven-property Model (§D.2.1). dateTime values are ordered by their
·timeOnTimeline· value.

Note: Since the order of a dateTime value having a ·timezoneOffset· relative to another value whose ·timezoneOffset· is
absent is determined by imputing time zone offsets of both +14:00 and −14:00 to the value with no time zone offset, many
such combinations will be ·incomparable· because the two imputed time zone offsets yield different orders.

Although dateTime and other types related to dates and times have only a partial order, it is possible for datatypes derived
from dateTime to have total orders, if they are restricted (e.g. using the pattern facet) to the subset of values with, or the
subset of values without, time zone offsets. Similar restrictions on other date- and time-related types will similarly produce
totally ordered subtypes. Note, however, that such restrictions do not affect the value shown, for a given Simple Type
Definition, in the ordered facet.

Note: Order and equality are essentially the same for dateTime in this version of this specification as they were in version
1.0. However, since values now distinguish time zone offsets, equal values with different ·timezoneOffset·s are not
identical, and values with extreme ·timezoneOffset·s may no longer be equal to any value with a smaller ·timezoneOffset·.

3.3.7.2 Lexical Mapping

The lexical representations for dateTime are as follows:

Lexical Space

[16] dateTimeLexicalRep ::= yearFrag '-' monthFrag '-' dayFrag 'T' ((hourFrag ':' minuteFrag ':' secondFrag) |
endOfDayFrag) timezoneFrag? Constraint: Day-of-month Representations

Constraint: Day-of-month Representations

Within a dateTimeLexicalRep, a dayFrag ���� ��� begin with the digit '3' or be '29' unless the value to which it would map
would satisfy the value constraint on ·day· values ("Constraint: Day-of-month Values") given above.

In such representations:

yearFrag is a numeral consisting of at least four decimal digits, optionally preceded by a minus sign; leading '0' digits are
prohibited except to bring the digit count up to four. It represents the ·year· value.

Subsequent '-', 'T', and ':', separate the various numerals.

monthFrag, dayFrag, hourFrag, and minuteFrag are numerals consisting of exactly two decimal digits. They represent
the ·month·, ·day·, ·hour·, and ·minute· values respectively.

secondFrag is a numeral consisting of exactly two decimal digits, or two decimal digits, a decimal point, and one or more
trailing digits. It represents the ·second· value.

Alternatively, endOfDayFrag combines the hourFrag, minuteFrag, minuteFrag, and their separators to represent midnight
of the day, which is the first moment of the next day.

timezoneFrag, if present, specifies an offset between UTC and local time. Time zone offsets are a count of minutes

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

29 of 171 03/07/2021, 05:45

(expressed in timezoneFrag as a count of hours and minutes) that are added or subtracted from UTC time to get the
"local" time. 'Z' is an alternative representation of the time zone offset '00:00', which is, of course, zero minutes from UTC.

For example, 2002-10-10T12:00:00−05:00 (noon on 10 October 2002, Central Daylight Savings Time as well as Eastern
Standard Time in the U.S.) is equal to 2002-10-10T17:00:00Z, five hours later than 2002-10-10T12:00:00Z.

Note: For the most part, this specification adopts the distinction between 'timezone' and 'timezone offset' laid out in
[Timezones]. Version 1.0 of this specification did not make this distinction, but used the term 'timezone' for the time
zone offset information associated with date- and time-related datatypes. Some traces of the earlier usage remain
visible in this and other specifications. The names timezoneFrag and explicitTimezone are such traces ; others will
be found in the names of functions defined in [XQuery 1.0 and XPath 2.0 Functions and Operators], or in references
in this specification to "timezoned" and "non-timezoned" values.

The dateTimeLexicalRep production is equivalent to this regular expression once whitespace is removed.

-?([1-9][0-9]{3,}|0[0-9]{3})
-(0[1-9]|1[0-2])
-(0[1-9]|[12][0-9]|3[01])
T(([01][0-9]|2[0-3]):[0-5][0-9]:[0-5][0-9](\.[0-9]+)?|(24:00:00(\.0+)?))
(Z|(\+|-)((0[0-9]|1[0-3]):[0-5][0-9]|14:00))?

Note that neither the dateTimeLexicalRep production nor this regular expression alone enforce the constraint on
dateTimeLexicalRep given above.

The ·lexical mapping· for dateTime is ·dateTimeLexicalMap·. The ·canonical mapping· is ·dateTimeCanonicalMap·.

3.3.7.3 Facets

The dateTime datatype and all datatypes derived from it by restriction have the following ·constraining facets· with fixed
values; these facets ���� ��� be changed from the values shown:

whiteSpace = collapse (fixed)

The dateTime datatype has the following ·constraining facets· with the values shown; these facets ��� be specified in the
derivation of new types, if the value given is at least as restrictive as the one shown:

explicitTimezone = optional

Datatypes derived by restriction from dateTime ��� also specify values for the following ·constraining facets·:

pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive
assertions

The dateTime datatype has the following values for its ·fundamental facets·:

ordered = partial
bounded = false
cardinality = countably infinite
numeric = false

3.3.7.4 Related Datatypes

The following ·built-in· datatype is ·derived· from dateTime

dateTimeStamp

3.3.8 time

time represents instants of time that recur at the same point in each calendar day, or that occur in some arbitrary calendar day.

3.3.8.1 Value Space

time uses the date/timeSevenPropertyModel, with ·year·, ·month·, and ·day· required to be absent. ·timezoneOffset· remains
·optional·.

Note: See the conformance note in Partial Implementation of Infinite Datatypes (§5.4) which applies to the ·second· value

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

30 of 171 03/07/2021, 05:45

of this datatype.

Equality and order are as prescribed in The Seven-property Model (§D.2.1). time values (points in time in an "arbitrary" day)
are ordered taking into account their ·timezoneOffset·.

A calendar (or "local time") day with a larger positive time zone offset begins earlier than the same calendar day with a smaller
(or negative) time zone offset. Since the time zone offsets allowed spread over 28 hours, it is possible for the period denoted by
a given calendar day with one time zone offset to be completely disjoint from the period denoted by the same calendar day with
a different offset — the earlier day ends before the later one starts. The moments in time represented by a single calendar day
are spread over a 52-hour interval, from the beginning of the day in the +14:00 time zone offset to the end of that day in the
−14:00 time zone offset.

Note: The relative order of two time values, one of which has a ·timezoneOffset· of absent is determined by imputing time
zone offsets of both +14:00 and −14:00 to the value without an offset. Many such combinations will be ·incomparable·
because the two imputed time zone offsets yield different orders. However, for a given non-timezoned value, there will
always be timezoned values at one or both ends of the 52-hour interval that are ·comparable· (because the interval of
·incomparability· is only 28 hours wide).

Some pairs of time literals which in the 1.0 version of this specification denoted the same value now (in this version)
denote distinct values instead, because values now include time zone offset information. Some such pairs, such as
'05:00:00-03:00' and '10:00:00+02:00', now denote equal though distinct values (because they identify the same points on
the time line); others, such as '23:00:00-03:00' and '02:00:00Z', now denote unequal values (23:00:00−03:00 > 02:00:00Z
because 23:00:00−03:00 on any given day is equal to 02:00:00Z on the next day).

3.3.8.2 Lexical Mappings

The lexical representations for time are "projections" of those of dateTime, as follows:

Lexical Space

[17] timeLexicalRep ::= ((hourFrag ':' minuteFrag ':' secondFrag) | endOfDayFrag) timezoneFrag?

The timeLexicalRep production is equivalent to this regular expression, once whitespace is removed:

(([01][0-9]|2[0-3]):[0-5][0-9]:[0-5][0-9](\.[0-9]+)?|(24:00:00(\.0+)?))(Z|(\+|-)
((0[0-9]|1[0-3]):[0-5][0-9]|14:00))?

Note that neither the timeLexicalRep production nor this regular expression alone enforce the constraint on timeLexicalRep
given above.

The ·lexical mapping· for time is ·timeLexicalMap·; the ·canonical mapping· is ·timeCanonicalMap·.

Note: The ·lexical mapping· maps '00:00:00' and '24:00:00' to the same value, namely midnight (·hour· = 0 , ·minute· = 0 ,
·second· = 0).

3.3.8.3 Facets

The time datatype and all datatypes derived from it by restriction have the following ·constraining facets· with fixed values;
these facets ���� ��� be changed from the values shown:

whiteSpace = collapse (fixed)

The time datatype has the following ·constraining facets· with the values shown; these facets ��� be specified in the derivation
of new types, if the value given is at least as restrictive as the one shown:

explicitTimezone = optional

Datatypes derived by restriction from time ��� also specify values for the following ·constraining facets·:

pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive
assertions

The time datatype has the following values for its ·fundamental facets·:

ordered = partial

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

31 of 171 03/07/2021, 05:45

bounded = false
cardinality = countably infinite
numeric = false

3.3.9 date

[Definition:] date represents top-open intervals of exactly one day in length on the timelines of dateTime, beginning on the
beginning moment of each day, up to but not including the beginning moment of the next day). For non-timezoned values, the
top-open intervals disjointly cover the non-timezoned timeline, one per day. For timezoned values, the intervals begin at every
minute and therefore overlap.

3.3.9.1 Value Space

date uses the date/timeSevenPropertyModel, with ·hour·, ·minute·, and ·second· required to be absent. ·timezoneOffset·
remains ·optional·.

Constraint: Day-of-month Values

The ·day· value ���� be no more than 30 if ·month· is one of 4, 6, 9, or 11, no more than 28 if ·month· is 2 and ·year· is not
divisible by 4, or is divisible by 100 but not by 400, and no more than 29 if ·month· is 2 and ·year· is divisible by 400, or by 4
but not by 100.

Note: See the conformance note in Partial Implementation of Infinite Datatypes (§5.4) which applies to the ·year· value of
this datatype.

Equality and order are as prescribed in The Seven-property Model (§D.2.1).

Note: In version 1.0 of this specification, date values did not retain a time zone offset explicitly, but for offsets not too far
from zero their time zone offset could be recovered based on their value's first moment on the timeline. The
date/timeSevenPropertyModel retains all time zone offsets.

Some date values with different time zone offsets that were identical in the 1.0 version of this specification, such as
2000-01-01+13:00 and 1999-12-31−11:00, are in this version of this specification equal (because they begin at the same
moment on the time line) but are not identical (because they have and retain different time zone offsets). This situation will
arise for dates only if one has a far-from-zero time zone offset and hence in 1.0 its "recoverable time zone offset" was
different from the the time zone offset which is retained in the date/timeSevenPropertyModel used in this version of this
specification.

3.3.9.2 Lexical Mapping

The lexical representations for date are "projections" of those of dateTime, as follows:

Lexical Space

[18] dateLexicalRep ::= yearFrag '-' monthFrag '-' dayFrag timezoneFrag? Constraint: Day-of-month
Representations

Constraint: Day-of-month Representations

Within a dateLexicalRep, a dayFrag ���� ��� begin with the digit '3' or be '29' unless the value to which it would map would
satisfy the value constraint on ·day· values ("Constraint: Day-of-month Values") given above.

The dateLexicalRep production is equivalent to this regular expression:

-?([1-9][0-9]{3,}|0[0-9]{3})-(0[1-9]|1[0-2])-(0[1-9]|[12][0-9]|3[01])(Z|(\+|-)((0[0-9]|1[0-3]):[0-5][0-9]|14:00))?

Note that neither the dateLexicalRep production nor this regular expression alone enforce the constraint on dateLexicalRep
given above.

The ·lexical mapping· for date is ·dateLexicalMap·. The ·canonical mapping· is ·dateCanonicalMap·.

3.3.9.3 Facets

The date datatype and all datatypes derived from it by restriction have the following ·constraining facets· with fixed values;
these facets ���� ��� be changed from the values shown:

whiteSpace = collapse (fixed)

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

32 of 171 03/07/2021, 05:45

The date datatype has the following ·constraining facets· with the values shown; these facets ��� be specified in the derivation
of new types, if the value given is at least as restrictive as the one shown:

explicitTimezone = optional

Datatypes derived by restriction from date ��� also specify values for the following ·constraining facets·:

pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive
assertions

The date datatype has the following values for its ·fundamental facets·:

ordered = partial
bounded = false
cardinality = countably infinite
numeric = false

3.3.10 gYearMonth

gYearMonth represents specific whole Gregorian months in specific Gregorian years.

Note: Because month/year combinations in one calendar only rarely correspond to month/year combinations in other
calendars, values of this type are not, in general, convertible to simple values corresponding to month/year combinations
in other calendars. This type should therefore be used with caution in contexts where conversion to other calendars is
desired.

3.3.10.1 Value Space

gYearMonth uses the date/timeSevenPropertyModel, with ·day·, ·hour·, ·minute·, and ·second· required to be absent.
·timezoneOffset· remains ·optional·.

Note: See the conformance note in Partial Implementation of Infinite Datatypes (§5.4) which applies to the ·year· value of
this datatype.

Equality and order are as prescribed in The Seven-property Model (§D.2.1).

3.3.10.2 Lexical Mapping

The lexical representations for gYearMonth are "projections" of those of dateTime, as follows:

Lexical Space

[19] gYearMonthLexicalRep ::= yearFrag '-' monthFrag timezoneFrag?

The gYearMonthLexicalRep is equivalent to this regular expression:

-?([1-9][0-9]{3,}|0[0-9]{3})-(0[1-9]|1[0-2])(Z|(\+|-)((0[0-9]|1[0-3]):[0-5][0-9]|14:00))?

The ·lexical mapping· for gYearMonth is ·gYearMonthLexicalMap·. The ·canonical mapping· is ·gYearMonthCanonicalMap·.

3.3.10.3 Facets

The gYearMonth datatype and all datatypes derived from it by restriction have the following ·constraining facets· with fixed
values; these facets ���� ��� be changed from the values shown:

whiteSpace = collapse (fixed)

The gYearMonth datatype has the following ·constraining facets· with the values shown; these facets ��� be specified in the
derivation of new types, if the value given is at least as restrictive as the one shown:

explicitTimezone = optional

Datatypes derived by restriction from gYearMonth ��� also specify values for the following ·constraining facets·:

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

33 of 171 03/07/2021, 05:45

pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive
assertions

The gYearMonth datatype has the following values for its ·fundamental facets·:

ordered = partial
bounded = false
cardinality = countably infinite
numeric = false

3.3.11 gYear

gYear represents Gregorian calendar years.

Note: Because years in one calendar only rarely correspond to years in other calendars, values of this type are not, in
general, convertible to simple values corresponding to years in other calendars. This type should therefore be used with
caution in contexts where conversion to other calendars is desired.

3.3.11.1 Value Space

gYear uses the date/timeSevenPropertyModel, with ·month·, ·day·, ·hour·, ·minute·, and ·second· required to be absent.
·timezoneOffset· remains ·optional·.

Note: See the conformance note in Partial Implementation of Infinite Datatypes (§5.4) which applies to the ·year· value of
this datatype.

Equality and order are as prescribed in The Seven-property Model (§D.2.1).

3.3.11.2 Lexical Mapping

The lexical representations for gYear are "projections" of those of dateTime, as follows:

Lexical Space

[20] gYearLexicalRep ::= yearFrag timezoneFrag?

The gYearLexicalRep is equivalent to this regular expression:

-?([1-9][0-9]{3,}|0[0-9]{3})(Z|(\+|-)((0[0-9]|1[0-3]):[0-5][0-9]|14:00))?

The ·lexical mapping· for gYear is ·gYearLexicalMap·. The ·canonical mapping· is ·gYearCanonicalMap·.

3.3.11.3 Facets

The gYear datatype and all datatypes derived from it by restriction have the following ·constraining facets· with fixed values;
these facets ���� ��� be changed from the values shown:

whiteSpace = collapse (fixed)

The gYear datatype has the following ·constraining facets· with the values shown; these facets ��� be specified in the
derivation of new types, if the value given is at least as restrictive as the one shown:

explicitTimezone = optional

Datatypes derived by restriction from gYear ��� also specify values for the following ·constraining facets·:

pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive
assertions

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

34 of 171 03/07/2021, 05:45

The gYear datatype has the following values for its ·fundamental facets·:

ordered = partial
bounded = false
cardinality = countably infinite
numeric = false

3.3.12 gMonthDay

gMonthDay represents whole calendar days that recur at the same point in each calendar year, or that occur in some arbitrary
calendar year. (Obviously, days beyond 28 cannot occur in all Februaries; 29 is nonetheless permitted.)

This datatype can be used, for example, to record birthdays; an instance of the datatype could be used to say that someone's
birthday occurs on the 14th of September every year.

Note: Because day/month combinations in one calendar only rarely correspond to day/month combinations in other
calendars, values of this type do not, in general, have any straightforward or intuitive representation in terms of most other
calendars. This type should therefore be used with caution in contexts where conversion to other calendars is desired.

3.3.12.1 Value Space

gMonthDay uses the date/timeSevenPropertyModel, with ·year·, ·hour·, ·minute·, and ·second· required to be absent.
·timezoneOffset· remains ·optional·.

Constraint: Day-of-month Values

The ·day· value ���� be no more than 30 if ·month· is one of 4, 6, 9, or 11, and no more than 29 if ·month· is 2.

Equality and order are as prescribed in The Seven-property Model (§D.2.1).

Note: In version 1.0 of this specification, gMonthDay values did not retain a time zone offset explicitly, but for time zone
offsets not too far from ·UTC· their time zone offset could be recovered based on their value's first moment on the
timeline. The date/timeSevenPropertyModel retains all time zone offsets.

An example that shows the difference from version 1.0 (see Lexical Mapping (§3.3.12.2) for the notations):

A day is a calendar (or "local time") day offset from ·UTC· by the appropriate interval; this is now true for all ·day·
values, including those with time zone offsets outside the range +12:00 through -11:59 inclusive:

--12-12+13:00 < --12-12+11:00 (just as --12-12+12:00 has always been less than --12-12+11:00, but in version 1.0
--12-12+13:00 > --12-12+11:00 , since --12-12+13:00's "recoverable time zone offset" was −11:00)

3.3.12.2 Lexical Mapping

The lexical representations for gMonthDay are "projections" of those of dateTime, as follows:

Lexical Space

[21] gMonthDayLexicalRep ::= '--' monthFrag '-' dayFrag timezoneFrag? Constraint: Day-of-month Representations

Constraint: Day-of-month Representations

Within a gMonthDayLexicalRep, a dayFrag ���� ��� begin with the digit '3' or be '29' unless the value to which it would map
would satisfy the value constraint on ·day· values ("Constraint: Day-of-month Values") given above.

The gMonthDayLexicalRep is equivalent to this regular expression:

--(0[1-9]|1[0-2])-(0[1-9]|[12][0-9]|3[01])(Z|(\+|-)((0[0-9]|1[0-3]):[0-5][0-9]|14:00))?

Note that neither the gMonthDayLexicalRep production nor this regular expression alone enforce the constraint on
gMonthDayLexicalRep given above.

The ·lexical mapping· for gMonthDay is ·gMonthDayLexicalMap·. The ·canonical mapping· is ·gMonthDayCanonicalMap·.

3.3.12.3 Facets

The gMonthDay datatype and all datatypes derived from it by restriction have the following ·constraining facets· with fixed
values; these facets ���� ��� be changed from the values shown:

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

35 of 171 03/07/2021, 05:45

whiteSpace = collapse (fixed)

The gMonthDay datatype has the following ·constraining facets· with the values shown; these facets ��� be specified in the
derivation of new types, if the value given is at least as restrictive as the one shown:

explicitTimezone = optional

Datatypes derived by restriction from gMonthDay ��� also specify values for the following ·constraining facets·:

pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive
assertions

The gMonthDay datatype has the following values for its ·fundamental facets·:

ordered = partial
bounded = false
cardinality = countably infinite
numeric = false

3.3.13 gDay

[Definition:] gDay represents whole days within an arbitrary month—days that recur at the same point in each (Gregorian)
month. This datatype is used to represent a specific day of the month. To indicate, for example, that an employee gets a
paycheck on the 15th of each month. (Obviously, days beyond 28 cannot occur in all months; they are nonetheless permitted,
up to 31.)

Note: Because days in one calendar only rarely correspond to days in other calendars, gDay values do not, in general,
have any straightforward or intuitive representation in terms of most non-Gregorian calendars. gDay should therefore be
used with caution in contexts where conversion to other calendars is desired.

3.3.13.1 Value Space

gDay uses the date/timeSevenPropertyModel, with ·year·, ·month·, ·hour·, ·minute·, and ·second· required to be absent.
·timezoneOffset· remains ·optional· and ·day· ���� be between 1 and 31 inclusive.

Equality and order are as prescribed in The Seven-property Model (§D.2.1). Since gDay values (days) are ordered by their first
moments, it is possible for apparent anomalies to appear in the order when ·timezoneOffset· values differ by at least 24 hours.
(It is possible for ·timezoneOffset· values to differ by up to 28 hours.)

Examples that may appear anomalous (see Lexical Mapping (§3.3.13.2) for the notations):

---15 < ---16 , but ---15−13:00 > ---16+13:00

---15−11:00 = ---16+13:00

---15−13:00 <> ---16 , because ---15−13:00 > ---16+14:00 and ---15−13:00 < 16−14:00

Note: Time zone offsets do not cause wrap-around at the end of the month: the last day of a given month with a time zone
offset of −13:00 may start after the first day of the next month with offset +13:00, as measured on the global timeline, but
nonetheless ---01+13:00 < ---31−13:00 .

3.3.13.2 Lexical Mapping

The lexical representations for gDay are "projections" of those of dateTime, as follows:

Lexical Space

[22] gDayLexicalRep ::= '---' dayFrag timezoneFrag?

The gDayLexicalRep is equivalent to this regular expression:

---(0[1-9]|[12][0-9]|3[01])(Z|(\+|-)((0[0-9]|1[0-3]):[0-5][0-9]|14:00))?

The ·lexical mapping· for gDay is ·gDayLexicalMap·. The ·canonical mapping· is ·gDayCanonicalMap·.

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

36 of 171 03/07/2021, 05:45

3.3.13.3 Facets

The gDay datatype and all datatypes derived from it by restriction have the following ·constraining facets· with fixed values;
these facets ���� ��� be changed from the values shown:

whiteSpace = collapse (fixed)

The gDay datatype has the following ·constraining facets· with the values shown; these facets ��� be specified in the
derivation of new types, if the value given is at least as restrictive as the one shown:

explicitTimezone = optional

Datatypes derived by restriction from gDay ��� also specify values for the following ·constraining facets·:

pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive
assertions

The gDay datatype has the following values for its ·fundamental facets·:

ordered = partial
bounded = false
cardinality = countably infinite
numeric = false

3.3.14 gMonth

gMonth represents whole (Gregorian) months within an arbitrary year—months that recur at the same point in each year. It
might be used, for example, to say what month annual Thanksgiving celebrations fall in different countries (--11 in the United
States, --10 in Canada, and possibly other months in other countries).

Note: Because months in one calendar only rarely correspond to months in other calendars, values of this type do not, in
general, have any straightforward or intuitive representation in terms of most other calendars. This type should therefore
be used with caution in contexts where conversion to other calendars is desired.

3.3.14.1 Value Space

gMonth uses the date/timeSevenPropertyModel, with ·year·, ·day·, ·hour·, ·minute·, and ·second· required to be absent.
·timezoneOffset· remains ·optional·.

Equality and order are as prescribed in The Seven-property Model (§D.2.1).

3.3.14.2 Lexical Mapping

The lexical representations for gMonth are "projections" of those of dateTime, as follows:

Lexical Space

[23] gMonthLexicalRep ::= '--' monthFrag timezoneFrag?

The gMonthLexicalRep is equivalent to this regular expression:

--(0[1-9]|1[0-2])(Z|(\+|-)((0[0-9]|1[0-3]):[0-5][0-9]|14:00))?

The ·lexical mapping· for gMonth is ·gMonthLexicalMap·. The ·canonical mapping· is ·gMonthCanonicalMap·.

3.3.14.3 Facets

The gMonth datatype and all datatypes derived from it by restriction have the following ·constraining facets· with fixed values;
these facets ���� ��� be changed from the values shown:

whiteSpace = collapse (fixed)

The gMonth datatype has the following ·constraining facets· with the values shown; these facets ��� be specified in the

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

37 of 171 03/07/2021, 05:45

derivation of new types, if the value given is at least as restrictive as the one shown:

explicitTimezone = optional

Datatypes derived by restriction from gMonth ��� also specify values for the following ·constraining facets·:

pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive
assertions

The gMonth datatype has the following values for its ·fundamental facets·:

ordered = partial
bounded = false
cardinality = countably infinite
numeric = false

3.3.15 hexBinary

[Definition:] hexBinary represents arbitrary hex-encoded binary data.

3.3.15.1 Value Space

The ·value space· of hexBinary is the set of finite-length sequences of zero or more binary octets. The length of a value is the
number of octets.

3.3.15.2 Lexical Mapping

hexBinary's ·lexical space· consists of strings of hex (hexadecimal) digits, two consecutive digits representing each octet in the
corresponding value (treating the octet as the binary representation of a number between 0 and 255). For example, '0FB7' is a
·lexical representation· of the two-octet value 00001111 10110111.

More formally, the ·lexical space· of hexBinary is the set of literals matching the hexBinary production.

Lexical space of hexBinary

[24] hexDigit ::= [0-9a-fA-F]

[25] hexOctet ::= hexDigit hexDigit

[26] hexBinary ::= hexOctet*

The set recognized by hexBinary is the same as that recognized by the regular expression '([0-9a-fA-F]{2})*'.

The ·lexical mapping· of hexBinary is ·hexBinaryMap·.

The ·canonical mapping· of hexBinary is given formally in ·hexBinaryCanonical·.

3.3.15.3 Facets

The hexBinary datatype and all datatypes derived from it by restriction have the following ·constraining facets· with fixed
values; these facets ���� ��� be changed from the values shown:

whiteSpace = collapse (fixed)

Datatypes derived by restriction from hexBinary ��� also specify values for the following ·constraining facets·:

length
minLength
maxLength
pattern
enumeration
assertions

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

38 of 171 03/07/2021, 05:45

The hexBinary datatype has the following values for its ·fundamental facets·:

ordered = false
bounded = false
cardinality = countably infinite
numeric = false

3.3.16 base64Binary

[Definition:] base64Binary represents arbitrary Base64-encoded binary data. For base64Binary data the entire binary
stream is encoded using the Base64 Encoding defined in [RFC 3548], which is derived from the encoding described in [RFC
2045].

3.3.16.1 Value Space

The ·value space· of base64Binary is the set of finite-length sequences of zero or more binary octets. The length of a value is
the number of octets.

3.3.16.2 Lexical Mapping

The ·lexical representations· of base64Binary values are limited to the 65 characters of the Base64 Alphabet defined in [RFC
3548], i.e., a-z, A-Z, 0-9, the plus sign (+), the forward slash (/) and the equal sign (=), together with the space character (#x20).
No other characters are allowed.

For compatibility with older mail gateways, [RFC 2045] suggests that Base64 data should have lines limited to at most 76
characters in length. This line-length limitation is not required by [RFC 3548] and is not mandated in the ·lexical
representations· of base64Binary data. It ���� ��� be enforced by XML Schema processors.

The ·lexical space· of base64Binary is the set of literals which ·match· the base64Binaryproduction.

Lexical space of base64Binary

[27] Base64Binary ::= (B64quad* B64final)?

[28] B64quad ::= (B64 B64 B64 B64)
/* B64quad represents three octets of binary data. */

[29] B64final ::= B64finalquad | Padded16 | Padded8

[30] B64finalquad ::= (B64 B64 B64 B64char)
/* B64finalquad represents three octets of binary data without trailing space. */

[31] Padded16 ::= B64 B64 B16 '='
/* Padded16 represents a two-octet at the end of the data. */

[32] Padded8 ::= B64 B04 '=' #x20? '='
/* Padded8 represents a single octet at the end of the data. */

[33] B64 ::= B64char #x20?

[34] B64char ::= [A-Za-z0-9+/]

[35] B16 ::= B16char #x20?

[36] B16char ::= [AEIMQUYcgkosw048]
/* Base64 characters whose bit-string value ends in '00' */

[37] B04 ::= B04char #x20?

[38] B04char ::= [AQgw]
/* Base64 characters whose bit-string value ends in '0000' */

The Base64Binary production is equivalent to the following regular expression.

((([A-Za-z0-9+/] ?){4})*(([A-Za-z0-9+/] ?){3}[A-Za-z0-9+/]|([A-Za-z0-9+/] ?){2}[AEIMQUYcgkosw048] ?=|[A-Za-z0-9+/] ?[AQgw] ?= ?=))?

Note that each '?' except the last is preceded by a single space character.

Note that this grammar requires the number of non-whitespace characters in the ·lexical representation· to be a multiple of four,

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

39 of 171 03/07/2021, 05:45

and for equals signs to appear only at the end of the ·lexical representation·; literals which do not meet these constraints are
not legal ·lexical representations· of base64Binary.

The ·lexical mapping· for base64Binary is as given in [RFC 2045] and [RFC 3548].

Note: The above definition of the ·lexical space· is more restrictive than that given in [RFC 2045] as regards whitespace —
and less restrictive than [RFC 3548]. This is not an issue in practice. Any string compatible with either RFC can occur in
an element or attribute validated by this type, because the ·whiteSpace· facet of this type is fixed to collapse, which
means that all leading and trailing whitespace will be stripped, and all internal whitespace collapsed to single space
characters, before the above grammar is enforced. The possibility of ignoring whitespace in Base64 data is foreseen in
clause 2.3 of [RFC 3548], but for the reasons given there this specification does not allow implementations to ignore non-
whitespace characters which are not in the Base64 Alphabet.

The canonical ·lexical representation· of a base64Binary data value is the Base64 encoding of the value which matches the
Canonical-base64Binary production in the following grammar:

Canonical representation of base64Binary

[39] Canonical-base64Binary ::= CanonicalQuad* CanonicalPadded?

[40] CanonicalQuad ::= B64char B64char B64char B64char

[41] CanonicalPadded ::= B64char B64char B16char '=' | B64char B04char '=='

That is, the ·canonical representation· of a base64Binary value is the ·lexical representation· which maps to that value and
contains no whitespace. The ·canonical mapping· for base64Binary is thus the encoding algorithm for Base64 data given in
[RFC 2045] and [RFC 3548], with the proviso that no characters except those in the Base64 Alphabet are to be written out.

Note: For some values the ·canonical representation· defined above does not conform to [RFC 2045], which requires
breaking with linefeeds at appropriate intervals. It does conform with [RFC 3548].

The length of a base64Binary value may be calculated from the ·lexical representation· by removing whitespace and padding
characters and performing the calculation shown in the pseudo-code below:

lex2 := killwhitespace(lexform) -- remove whitespace characters
lex3 := strip_equals(lex2) -- strip padding characters at end
length := floor (length(lex3) * 3 / 4) -- calculate length

Note on encoding: [RFC 2045] and [RFC 3548] explicitly reference US-ASCII encoding. However, decoding of base64Binary
data in an XML entity is to be performed on the Unicode characters obtained after character encoding processing as specified
by [XML].

3.3.16.3 Facets

The base64Binary datatype and all datatypes derived from it by restriction have the following ·constraining facets· with fixed
values; these facets ���� ��� be changed from the values shown:

whiteSpace = collapse (fixed)

Datatypes derived by restriction from base64Binary ��� also specify values for the following ·constraining facets·:

length
minLength
maxLength
pattern
enumeration
assertions

The base64Binary datatype has the following values for its ·fundamental facets·:

ordered = false
bounded = false
cardinality = countably infinite
numeric = false

3.3.17 anyURI

[Definition:] anyURI represents an Internationalized Resource Identifier Reference (IRI). An anyURI value can be absolute or
relative, and may have an optional fragment identifier (i.e., it may be an IRI Reference). This type should be used when the

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

40 of 171 03/07/2021, 05:45

value fulfills the role of an IRI, as defined in [RFC 3987] or its successor(s) in the IETF Standards Track.

Note: IRIs may be used to locate resources or simply to identify them. In the case where they are used to locate resources
using a URI, applications should use the mapping from anyURI values to URIs given by the reference escaping procedure
defined in [LEIRI] and in Section 3.1 Mapping of IRIs to URIs of [RFC 3987] or its successor(s) in the IETF Standards
Track. This means that a wide range of internationalized resource identifiers can be specified when an anyURI is called
for, and still be understood as URIs per [RFC 3986] and its successor(s).

3.3.17.1 Value Space

The value space of anyURI is the set of finite-length sequences of zero or more characters (as defined in [XML]) that ·match·
the Char production from [XML].

3.3.17.2 Lexical Mapping

The ·lexical space· of anyURI is the set of finite-length sequences of zero or more characters (as defined in [XML]) that ·match·
the Char production from [XML].

Note: For an anyURI value to be usable in practice as an IRI, the result of applying to it the algorithm defined in Section
3.1 of [RFC 3987] should be a string which is a legal URI according to [RFC 3986]. (This is true at the time this document
is published; if in the future [RFC 3987] and [RFC 3986] are replaced by other specifications in the IETF Standards Track,
the relevant constraints will be those imposed by those successor specifications.)

Each URI scheme imposes specialized syntax rules for URIs in that scheme, including restrictions on the syntax of allowed
fragment identifiers. Because it is impractical for processors to check that a value is a context-appropriate URI reference,
neither the syntactic constraints defined by the definitions of individual schemes nor the generic syntactic constraints
defined by [RFC 3987] and [RFC 3986] and their successors are part of this datatype as defined here. Applications which
depend on anyURI values being legal according to the rules of the relevant specifications should make arrangements to
check values against the appropriate definitions of IRI, URI, and specific schemes.

Note: Spaces are, in principle, allowed in the ·lexical space· of anyURI, however, their use is highly discouraged (unless
they are encoded by '%20').

The ·lexical mapping· for anyURI is the identity mapping.

Note: The definitions of URI in the current IETF specifications define certain URIs as equivalent to each other. Those
equivalences are not part of this datatype as defined here: if two "equivalent" URIs or IRIs are different character
sequences, they map to different values in this datatype.

3.3.17.3 Facets

The anyURI datatype and all datatypes derived from it by restriction have the following ·constraining facets· with fixed values;
these facets ���� ��� be changed from the values shown:

whiteSpace = collapse (fixed)

Datatypes derived by restriction from anyURI ��� also specify values for the following ·constraining facets·:

length
minLength
maxLength
pattern
enumeration
assertions

The anyURI datatype has the following values for its ·fundamental facets·:

ordered = false
bounded = false
cardinality = countably infinite
numeric = false

3.3.18 QName

[Definition:] QName represents XML qualified names. The ·value space· of QName is the set of tuples {namespace name,
local part}, where namespace name is an anyURI and local part is an NCName. The ·lexical space· of QName is the set of
strings that ·match· the QName production of [Namespaces in XML].

It is ·implementation-defined· whether an implementation of this specification supports the QName production from

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

41 of 171 03/07/2021, 05:45

[Namespaces in XML], or that from [Namespaces in XML 1.0], or both. See Dependencies on Other Specifications (§1.3).

The mapping from lexical space to value space for a particular QName ·literal· depends on the namespace bindings in scope
where the literal occurs.

When QNames appear in an XML context, the bindings to be used in the ·lexical mapping· are those in the [in-scope
namespaces] property of the relevant element. When this datatype is used in a non-XML host language, the host language
���� specify what namespace bindings are to be used.

The host language, whether XML-based or otherwise, ��� specify whether unqualified names are bound to the default
namespace (if any) or not; the host language may also place this under user control. If the host language does not specify
otherwise, unqualified names are bound to the default namespace.

Note: The default treatment of unqualified names parallels that specified in [Namespaces in XML] for element names (as
opposed to that specified for attribute names).

Note: The mapping between ·literals· in the ·lexical space· and values in the ·value space· of QName depends on the set
of namespace declarations in scope for the context in which QName is used.

Because the lexical representations available for any value of type QName vary with context, no ·canonical representation·
is defined for QName in this specification.

3.3.18.1 Facets

The QName datatype and all datatypes derived from it by restriction have the following ·constraining facets· with fixed values;
these facets ���� ��� be changed from the values shown:

whiteSpace = collapse (fixed)

Datatypes derived by restriction from QName ��� also specify values for the following ·constraining facets·:

length
minLength
maxLength
pattern
enumeration
assertions

The QName datatype has the following values for its ·fundamental facets·:

ordered = false
bounded = false
cardinality = countably infinite
numeric = false

3.3.19 NOTATION

[Definition:] NOTATION represents the NOTATION attribute type from [XML]. The ·value space· of NOTATION is the set of
QNames of notations declared in the current schema. The ·lexical space· of NOTATION is the set of all names of notations
declared in the current schema (in the form of QNames).

Note: Because its ·value space· depends on the notion of a "current schema", as instantiated for example by [XSD 1.1
Part 1: Structures], the NOTATION datatype is unsuitable for use in other contexts which lack the notion of a current
schema.

The lexical mapping rules for NOTATION are as given for QName in QName (§3.3.18).

Schema Component Constraint: enumeration facet value required for NOTATION

It is (with one exception) an ·error· for NOTATION to be used directly to validate a literal as described in Datatype Valid
(§4.1.4): only datatypes ·derived· from NOTATION by specifying a value for ·enumeration· can be used to validate literals.

The exception is that in the ·derivation· of a new type the ·literals· used to enumerate the allowed values ��� be (and in the
context of [XSD 1.1 Part 1: Structures] will be) validated directly against NOTATION; this amounts to verifying that the value
is a QName and that the QName is the name of a NOTATION declared in the current schema.

For compatibility (see Terminology (§1.6)) NOTATION should be used only on attributes and should only be used in schemas
with no target namespace.

Note: Because the lexical representations available for any given value of NOTATION vary with context, this specification
defines no ·canonical representation· for NOTATION values.

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

42 of 171 03/07/2021, 05:45

3.3.19.1 Facets

The NOTATION datatype and all datatypes derived from it by restriction have the following ·constraining facets· with fixed
values; these facets ���� ��� be changed from the values shown:

whiteSpace = collapse (fixed)

Datatypes derived by restriction from NOTATION ��� also specify values for the following ·constraining facets·:

length
minLength
maxLength
pattern
enumeration
assertions

The NOTATION datatype has the following values for its ·fundamental facets·:

ordered = false
bounded = false
cardinality = countably infinite
numeric = false

The use of ·length·, ·minLength· and ·maxLength· on NOTATION or datatypes ·derived· from NOTATION is deprecated.
Future versions of this specification may remove these facets for this datatype.

3.4 Other Built-in Datatypes
 3.4.1 normalizedString
 3.4.1.1 Facets
 3.4.1.2 Derived datatypes
 3.4.2 token
 3.4.2.1 Facets
 3.4.2.2 Derived datatypes
 3.4.3 language
 3.4.3.1 Facets
 3.4.4 NMTOKEN
 3.4.4.1 Facets
 3.4.4.2 Related datatypes
 3.4.5 NMTOKENS
 3.4.5.1 Facets
 3.4.6 Name
 3.4.6.1 Facets
 3.4.6.2 Derived datatypes
 3.4.7 NCName
 3.4.7.1 Facets
 3.4.7.2 Derived datatypes
 3.4.8 ID
 3.4.8.1 Facets
 3.4.9 IDREF
 3.4.9.1 Facets
 3.4.9.2 Related datatypes
 3.4.10 IDREFS
 3.4.10.1 Facets
 3.4.11 ENTITY
 3.4.11.1 Facets
 3.4.11.2 Related datatypes
 3.4.12 ENTITIES
 3.4.12.1 Facets
 3.4.13 integer
 3.4.13.1 Lexical representation
 3.4.13.2 Canonical representation
 3.4.13.3 Facets
 3.4.13.4 Derived datatypes
 3.4.14 nonPositiveInteger
 3.4.14.1 Lexical representation
 3.4.14.2 Canonical representation
 3.4.14.3 Facets
 3.4.14.4 Derived datatypes
 3.4.15 negativeInteger
 3.4.15.1 Lexical representation

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

43 of 171 03/07/2021, 05:45

 3.4.15.2 Canonical representation
 3.4.15.3 Facets
 3.4.16 long
 3.4.16.1 Lexical Representation
 3.4.16.2 Canonical Representation
 3.4.16.3 Facets
 3.4.16.4 Derived datatypes
 3.4.17 int
 3.4.17.1 Lexical Representation
 3.4.17.2 Canonical representation
 3.4.17.3 Facets
 3.4.17.4 Derived datatypes
 3.4.18 short
 3.4.18.1 Lexical representation
 3.4.18.2 Canonical representation
 3.4.18.3 Facets
 3.4.18.4 Derived datatypes
 3.4.19 byte
 3.4.19.1 Lexical representation
 3.4.19.2 Canonical representation
 3.4.19.3 Facets
 3.4.20 nonNegativeInteger
 3.4.20.1 Lexical representation
 3.4.20.2 Canonical representation
 3.4.20.3 Facets
 3.4.20.4 Derived datatypes
 3.4.21 unsignedLong
 3.4.21.1 Lexical representation
 3.4.21.2 Canonical representation
 3.4.21.3 Facets
 3.4.21.4 Derived datatypes
 3.4.22 unsignedInt
 3.4.22.1 Lexical representation
 3.4.22.2 Canonical representation
 3.4.22.3 Facets
 3.4.22.4 Derived datatypes
 3.4.23 unsignedShort
 3.4.23.1 Lexical representation
 3.4.23.2 Canonical representation
 3.4.23.3 Facets
 3.4.23.4 Derived datatypes
 3.4.24 unsignedByte
 3.4.24.1 Lexical representation
 3.4.24.2 Canonical representation
 3.4.24.3 Facets
 3.4.25 positiveInteger
 3.4.25.1 Lexical representation
 3.4.25.2 Canonical representation
 3.4.25.3 Facets
 3.4.26 yearMonthDuration
 3.4.26.1 The Lexical Mapping
 3.4.26.2 Facets
 3.4.27 dayTimeDuration
 3.4.27.1 The Lexical Space
 3.4.27.2 Facets
 3.4.28 dateTimeStamp
 3.4.28.1 The Lexical Space
 3.4.28.2 Facets

This section gives conceptual definitions for all ·built-in· ·ordinary· datatypes defined by this specification. The XML
representation used to define ·ordinary· datatypes (whether ·built-in· or ·user-defined·) is given in XML Representation of
Simple Type Definition Schema Components (§4.1.2) and the complete definitions of the ·built-in· ·ordinary· datatypes are
provided in the appendix Schema for Schema Documents (Datatypes) (normative) (§A).

3.4.1 normalizedString

[Definition:] normalizedString represents white space normalized strings. The ·value space· of normalizedString is the set
of strings that do not contain the carriage return (#xD), line feed (#xA) nor tab (#x9) characters. The ·lexical space· of
normalizedString is the set of strings that do not contain the carriage return (#xD), line feed (#xA) nor tab (#x9) characters.
The ·base type· of normalizedString is string.

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

44 of 171 03/07/2021, 05:45

3.4.1.1 Facets

The normalizedString datatype has the following ·constraining facets· with the values shown; these facets ��� be specified in
the derivation of new types, if the value given is at least as restrictive as the one shown:

whiteSpace = replace

Datatypes derived by restriction from normalizedString ��� also specify values for the following ·constraining facets·:

length
minLength
maxLength
pattern
enumeration
assertions

The normalizedString datatype has the following values for its ·fundamental facets·:

ordered = false
bounded = false
cardinality = countably infinite
numeric = false

3.4.1.2 Derived datatypes

The following ·built-in· datatype is ·derived· from normalizedString

token

3.4.2 token

[Definition:] token represents tokenized strings. The ·value space· of token is the set of strings that do not contain the
carriage return (#xD), line feed (#xA) nor tab (#x9) characters, that have no leading or trailing spaces (#x20) and that have no
internal sequences of two or more spaces. The ·lexical space· of token is the set of strings that do not contain the carriage
return (#xD), line feed (#xA) nor tab (#x9) characters, that have no leading or trailing spaces (#x20) and that have no internal
sequences of two or more spaces. The ·base type· of token is normalizedString.

3.4.2.1 Facets

The token datatype has the following ·constraining facets· with the values shown; these facets ��� be specified in the
derivation of new types, if the value given is at least as restrictive as the one shown:

whiteSpace = collapse

Datatypes derived by restriction from token ��� also specify values for the following ·constraining facets·:

length
minLength
maxLength
pattern
enumeration
assertions

The token datatype has the following values for its ·fundamental facets·:

ordered = false
bounded = false
cardinality = countably infinite
numeric = false

3.4.2.2 Derived datatypes

The following ·built-in· datatypes are ·derived· from token

language
NMTOKEN
Name

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

45 of 171 03/07/2021, 05:45

3.4.3 language

[Definition:] language represents formal natural language identifiers, as defined by [BCP 47] (currently represented by [RFC
4646] and [RFC 4647]) or its successor(s). The ·value space· and ·lexical space· of language are the set of all strings that
conform to the pattern

[a-zA-Z]{1,8}(-[a-zA-Z0-9]{1,8})*

This is the set of strings accepted by the grammar given in [RFC 3066], which is now obsolete; the current specification of
language codes is more restrictive. The ·base type· of language is token.

Note: The regular expression above provides the only normative constraint on the lexical and value spaces of this type.
The additional constraints imposed on language identifiers by [BCP 47] and its successor(s), and in particular their
requirement that language codes be registered with IANA or ISO if not given in ISO 639, are not part of this datatype as
defined here.

Note: [BCP 47] specifies that language codes "are to be treated as case insensitive; there exist conventions for
capitalization of some of the subtags, but these MUST NOT be taken to carry meaning." Since the language datatype is
derived from string, it inherits from string a one-to-one mapping from lexical representations to values. The literals 'MN' and
'mn' (for Mongolian) therefore correspond to distinct values and have distinct canonical forms. Users of this specification
should be aware of this fact, the consequence of which is that the case-insensitive treatment of language values
prescribed by [BCP 47] does not follow from the definition of this datatype given here; applications which require case-
insensitivity should make appropriate adjustments.

Note: The empty string is not a member of the ·value space· of language. Some constructs which normally take language
codes as their values, however, also allow the empty string. The attribute xml:lang defined by [XML] is one example; there,
the empty string overrides a value which would otherwise be inherited, but without specifying a new value.

One way to define the desired set of possible values is illustrated by the schema document for the XML namespace at
http://www.w3.org/2001/xml.xsd, which defines the attribute xml:lang as having a type which is a union of language and an
anonymous type whose only value is the empty string:

 <xs:attribute name="lang">
 <xs:annotation>
 <xs:documentation>
 See RFC 3066 at http://www.ietf.org/rfc/rfc3066.txt
 and the IANA registry at
 http://www.iana.org/assignments/lang-tag-apps.htm for
 further information.

 The union allows for the 'un-declaration' of xml:lang with
 the empty string.
 </xs:documentation>
 </xs:annotation>
 <xs:simpleType>
 <xs:union memberTypes="xs:language">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value=""/>
 </xs:restriction>
 </xs:simpleType>
 </xs:union>
 </xs:simpleType>
 </xs:attribute>

3.4.3.1 Facets

The language datatype has the following ·constraining facets· with the values shown; these facets ��� be specified in the
derivation of new types, if the value given is at least as restrictive as the one shown:

pattern = [a-zA-Z]{1,8}(-[a-zA-Z0-9]{1,8})*
whiteSpace = collapse

Datatypes derived by restriction from language ��� also specify values for the following ·constraining facets·:

length
minLength
maxLength
enumeration
assertions

The language datatype has the following values for its ·fundamental facets·:

ordered = false
bounded = false
cardinality = countably infinite

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

46 of 171 03/07/2021, 05:45

numeric = false

3.4.4 NMTOKEN

[Definition:] NMTOKEN represents the NMTOKEN attribute type from [XML]. The ·value space· of NMTOKEN is the set of
tokens that ·match· the Nmtoken production in [XML]. The ·lexical space· of NMTOKEN is the set of strings that ·match· the
Nmtoken production in [XML]. The ·base type· of NMTOKEN is token.

It is ·implementation-defined· whether an implementation of this specification supports the NMTOKEN production from [XML],
or that from [XML 1.0], or both. See Dependencies on Other Specifications (§1.3).

For compatibility (see Terminology (§1.6) NMTOKEN should be used only on attributes.

3.4.4.1 Facets

The NMTOKEN datatype has the following ·constraining facets· with the values shown; these facets ��� be specified in the
derivation of new types, if the value given is at least as restrictive as the one shown:

pattern = \c+
whiteSpace = collapse

Datatypes derived by restriction from NMTOKEN ��� also specify values for the following ·constraining facets·:

length
minLength
maxLength
enumeration
assertions

The NMTOKEN datatype has the following values for its ·fundamental facets·:

ordered = false
bounded = false
cardinality = countably infinite
numeric = false

3.4.4.2 Related datatypes

The following ·built-in· datatype is ·constructed· from NMTOKEN

NMTOKENS

3.4.5 NMTOKENS

[Definition:] NMTOKENS represents the NMTOKENS attribute type from [XML]. The ·value space· of NMTOKENS is the set of
finite, non-zero-length sequences of ·NMTOKEN·s. The ·lexical space· of NMTOKENS is the set of space-separated lists of
tokens, of which each token is in the ·lexical space· of NMTOKEN. The ·item type· of NMTOKENS is NMTOKEN. NMTOKENS
is derived from ·anySimpleType· in two steps: an anonymous list type is defined, whose ·item type· is NMTOKEN; this is the
·base type· of NMTOKENS, which restricts its value space to lists with at least one item.

For compatibility (see Terminology (§1.6)) NMTOKENS should be used only on attributes.

3.4.5.1 Facets

The NMTOKENS datatype has the following ·constraining facets· with the values shown; these facets ��� be specified in the
derivation of new types, if the value given is at least as restrictive as the one shown:

minLength = 1
whiteSpace = collapse

Datatypes derived by restriction from NMTOKENS ��� also specify values for the following ·constraining facets·:

length
maxLength
enumeration
pattern
assertions

The NMTOKENS datatype has the following values for its ·fundamental facets·:

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

47 of 171 03/07/2021, 05:45

ordered = false
bounded = false
cardinality = countably infinite
numeric = false

3.4.6 Name

[Definition:] Name represents XML Names. The ·value space· of Name is the set of all strings which ·match· the Name
production of [XML]. The ·lexical space· of Name is the set of all strings which ·match· the Name production of [XML]. The
·base type· of Name is token.

It is ·implementation-defined· whether an implementation of this specification supports the Name production from [XML], or that
from [XML 1.0], or both. See Dependencies on Other Specifications (§1.3).

3.4.6.1 Facets

The Name datatype has the following ·constraining facets· with the values shown; these facets ��� be specified in the
derivation of new types, if the value given is at least as restrictive as the one shown:

pattern = \i\c*
whiteSpace = collapse

Datatypes derived by restriction from Name ��� also specify values for the following ·constraining facets·:

length
minLength
maxLength
enumeration
assertions

The Name datatype has the following values for its ·fundamental facets·:

ordered = false
bounded = false
cardinality = countably infinite
numeric = false

3.4.6.2 Derived datatypes

The following ·built-in· datatype is ·derived· from Name

NCName

3.4.7 NCName

[Definition:] NCName represents XML "non-colonized" Names. The ·value space· of NCName is the set of all strings which
·match· the NCName production of [Namespaces in XML]. The ·lexical space· of NCName is the set of all strings which
·match· the NCName production of [Namespaces in XML]. The ·base type· of NCName is Name.

It is ·implementation-defined· whether an implementation of this specification supports the NCName production from
[Namespaces in XML], or that from [Namespaces in XML 1.0], or both. See Dependencies on Other Specifications (§1.3).

3.4.7.1 Facets

The NCName datatype has the following ·constraining facets· with the values shown; these facets ��� be specified in the
derivation of new types, if the value given is at least as restrictive as the one shown:

pattern = \i\c* ∩ [\i-[:]][\c-[:]]*
whiteSpace = collapse

Datatypes derived by restriction from NCName ��� also specify values for the following ·constraining facets·:

length
minLength
maxLength
enumeration
assertions

The NCName datatype has the following values for its ·fundamental facets·:

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

48 of 171 03/07/2021, 05:45

ordered = false
bounded = false
cardinality = countably infinite
numeric = false

3.4.7.2 Derived datatypes

The following ·built-in· datatypes are ·derived· from NCName

ID
IDREF
ENTITY

3.4.8 ID

[Definition:] ID represents the ID attribute type from [XML]. The ·value space· of ID is the set of all strings that ·match· the
NCName production in [Namespaces in XML]. The ·lexical space· of ID is the set of all strings that ·match· the NCName
production in [Namespaces in XML]. The ·base type· of ID is NCName.

Note: It is ·implementation-defined· whether an implementation of this specification supports the NCName production from
[Namespaces in XML], or that from [Namespaces in XML 1.0], or both. See Dependencies on Other Specifications (§1.3).

For compatibility (see Terminology (§1.6)), ID should be used only on attributes.

Note: Uniqueness of items validated as ID is not part of this datatype as defined here. When this specification is used in
conjunction with [XSD 1.1 Part 1: Structures], uniqueness is enforced at a different level, not as part of datatype validity;
see Validation Rule: Validation Root Valid (ID/IDREF) in [XSD 1.1 Part 1: Structures].

3.4.8.1 Facets

The ID datatype has the following ·constraining facets· with the values shown; these facets ��� be specified in the derivation of
new types, if the value given is at least as restrictive as the one shown:

pattern = \i\c* ∩ [\i-[:]][\c-[:]]*
whiteSpace = collapse

Datatypes derived by restriction from ID ��� also specify values for the following ·constraining facets·:

length
minLength
maxLength
enumeration
assertions

The ID datatype has the following values for its ·fundamental facets·:

ordered = false
bounded = false
cardinality = countably infinite
numeric = false

3.4.9 IDREF

[Definition:] IDREF represents the IDREF attribute type from [XML]. The ·value space· of IDREF is the set of all strings that
·match· the NCName production in [Namespaces in XML]. The ·lexical space· of IDREF is the set of strings that ·match· the
NCName production in [Namespaces in XML]. The ·base type· of IDREF is NCName.

Note: It is ·implementation-defined· whether an implementation of this specification supports the NCName production from
[Namespaces in XML], or that from [Namespaces in XML 1.0], or both. See Dependencies on Other Specifications (§1.3).

For compatibility (see Terminology (§1.6)) this datatype should be used only on attributes.

Note: Existence of referents for items validated as IDREF is not part of this datatype as defined here. When this
specification is used in conjunction with [XSD 1.1 Part 1: Structures], referential integrity is enforced at a different level, not
as part of datatype validity; see Validation Rule: Validation Root Valid (ID/IDREF) in [XSD 1.1 Part 1: Structures].

3.4.9.1 Facets

The IDREF datatype has the following ·constraining facets· with the values shown; these facets ��� be specified in the

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

49 of 171 03/07/2021, 05:45

derivation of new types, if the value given is at least as restrictive as the one shown:

pattern = \i\c* ∩ [\i-[:]][\c-[:]]*
whiteSpace = collapse

Datatypes derived by restriction from IDREF ��� also specify values for the following ·constraining facets·:

length
minLength
maxLength
enumeration
assertions

The IDREF datatype has the following values for its ·fundamental facets·:

ordered = false
bounded = false
cardinality = countably infinite
numeric = false

3.4.9.2 Related datatypes

The following ·built-in· datatype is ·constructed· from IDREF

IDREFS

3.4.10 IDREFS

[Definition:] IDREFS represents the IDREFS attribute type from [XML]. The ·value space· of IDREFS is the set of finite, non-
zero-length sequences of IDREFs. The ·lexical space· of IDREFS is the set of space-separated lists of tokens, of which each
token is in the ·lexical space· of IDREF. The ·item type· of IDREFS is IDREF. IDREFS is derived from ·anySimpleType· in two
steps: an anonymous list type is defined, whose ·item type· is IDREF; this is the ·base type· of IDREFS, which restricts its
value space to lists with at least one item.

For compatibility (see Terminology (§1.6)) IDREFS should be used only on attributes.

Note: Existence of referents for items validated as IDREFS is not part of this datatype as defined here. When this
specification is used in conjunction with [XSD 1.1 Part 1: Structures], referential integrity is enforced at a different level, not
as part of datatype validity; see Validation Rule: Validation Root Valid (ID/IDREF) in [XSD 1.1 Part 1: Structures].

3.4.10.1 Facets

The IDREFS datatype has the following ·constraining facets· with the values shown; these facets ��� be specified in the
derivation of new types, if the value given is at least as restrictive as the one shown:

minLength = 1
whiteSpace = collapse

Datatypes derived by restriction from IDREFS ��� also specify values for the following ·constraining facets·:

length
maxLength
enumeration
pattern
assertions

The IDREFS datatype has the following values for its ·fundamental facets·:

ordered = false
bounded = false
cardinality = countably infinite
numeric = false

3.4.11 ENTITY

[Definition:] ENTITY represents the ENTITY attribute type from [XML]. The ·value space· of ENTITY is the set of all strings
that ·match· the NCName production in [Namespaces in XML] and have been declared as an unparsed entity in a document
type definition. The ·lexical space· of ENTITY is the set of all strings that ·match· the NCName production in [Namespaces in
XML]. The ·base type· of ENTITY is NCName.

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

50 of 171 03/07/2021, 05:45

Note: It is ·implementation-defined· whether an implementation of this specification supports the NCName production from
[Namespaces in XML], or that from [Namespaces in XML 1.0], or both. See Dependencies on Other Specifications (§1.3).

Note: The ·value space· of ENTITY is scoped to a specific instance document.

For compatibility (see Terminology (§1.6)) ENTITY should be used only on attributes.

3.4.11.1 Facets

The ENTITY datatype has the following ·constraining facets· with the values shown; these facets ��� be specified in the
derivation of new types, if the value given is at least as restrictive as the one shown:

pattern = \i\c* ∩ [\i-[:]][\c-[:]]*
whiteSpace = collapse

Datatypes derived by restriction from ENTITY ��� also specify values for the following ·constraining facets·:

length
minLength
maxLength
enumeration
assertions

The ENTITY datatype has the following values for its ·fundamental facets·:

ordered = false
bounded = false
cardinality = countably infinite
numeric = false

3.4.11.2 Related datatypes

The following ·built-in· datatype is ·constructed· from ENTITY

ENTITIES

3.4.12 ENTITIES

[Definition:] ENTITIES represents the ENTITIES attribute type from [XML]. The ·value space· of ENTITIES is the set of finite,
non-zero-length sequences of ·ENTITY· values that have been declared as unparsed entities in a document type definition.
The ·lexical space· of ENTITIES is the set of space-separated lists of tokens, of which each token is in the ·lexical space· of
ENTITY. The ·item type· of ENTITIES is ENTITY. ENTITIES is derived from ·anySimpleType· in two steps: an anonymous list
type is defined, whose ·item type· is ENTITY; this is the ·base type· of ENTITIES, which restricts its value space to lists with at
least one item.

Note: The ·value space· of ENTITIES is scoped to a specific instance document.

For compatibility (see Terminology (§1.6)) ENTITIES should be used only on attributes.

3.4.12.1 Facets

The ENTITIES datatype has the following ·constraining facets· with the values shown; these facets ��� be specified in the
derivation of new types, if the value given is at least as restrictive as the one shown:

minLength = 1
whiteSpace = collapse

Datatypes derived by restriction from ENTITIES ��� also specify values for the following ·constraining facets·:

length
maxLength
enumeration
pattern
assertions

The ENTITIES datatype has the following values for its ·fundamental facets·:

ordered = false
bounded = false

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

51 of 171 03/07/2021, 05:45

cardinality = countably infinite
numeric = false

3.4.13 integer

[Definition:] integer is ·derived· from decimal by fixing the value of ·fractionDigits· to be 0 and disallowing the trailing decimal
point. This results in the standard mathematical concept of the integer numbers. The ·value space· of integer is the infinite
set {...,-2,-1,0,1,2,...}. The ·base type· of integer is decimal.

3.4.13.1 Lexical representation

integer has a lexical representation consisting of a finite-length sequence of one or more decimal digits (#x30-#x39) with an
optional leading sign. If the sign is omitted, "+" is assumed. For example: -1, 0, 12678967543233, +100000.

3.4.13.2 Canonical representation

The ·canonical representation· for integer is defined by prohibiting certain options from the Lexical representation (§3.4.13.1).
Specifically, the preceding optional "+" sign is prohibited and leading zeroes are prohibited.

3.4.13.3 Facets

The integer datatype and all datatypes derived from it by restriction have the following ·constraining facets· with fixed values;
these facets ���� ��� be changed from the values shown:

fractionDigits = 0 (fixed)
whiteSpace = collapse (fixed)

The integer datatype has the following ·constraining facets· with the values shown; these facets ��� be specified in the
derivation of new types, if the value given is at least as restrictive as the one shown:

pattern = [\-+]?[0-9]+

Datatypes derived by restriction from integer ��� also specify values for the following ·constraining facets·:

totalDigits
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive
assertions

The integer datatype has the following values for its ·fundamental facets·:

ordered = total
bounded = false
cardinality = countably infinite
numeric = true

3.4.13.4 Derived datatypes

The following ·built-in· datatypes are ·derived· from integer

nonPositiveInteger
long
nonNegativeInteger

3.4.14 nonPositiveInteger

[Definition:] nonPositiveInteger is ·derived· from integer by setting the value of ·maxInclusive· to be 0. This results in the
standard mathematical concept of the non-positive integers. The ·value space· of nonPositiveInteger is the infinite set {...,-
2,-1,0}. The ·base type· of nonPositiveInteger is integer.

3.4.14.1 Lexical representation

nonPositiveInteger has a lexical representation consisting of an optional preceding sign followed by a non-empty finite-length

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

52 of 171 03/07/2021, 05:45

sequence of decimal digits (#x30-#x39). The sign may be "+" or may be omitted only for lexical forms denoting zero; in all
other lexical forms, the negative sign ('-') ���� be present. For example: -1, 0, -12678967543233, -100000.

3.4.14.2 Canonical representation

The ·canonical representation· for nonPositiveInteger is defined by prohibiting certain options from the Lexical representation
(§3.4.14.1). In the canonical form for zero, the sign ���� be omitted. Leading zeroes are prohibited.

3.4.14.3 Facets

The nonPositiveInteger datatype and all datatypes derived from it by restriction have the following ·constraining facets· with
fixed values; these facets ���� ��� be changed from the values shown:

fractionDigits = 0 (fixed)
whiteSpace = collapse (fixed)

The nonPositiveInteger datatype has the following ·constraining facets· with the values shown; these facets ��� be specified in
the derivation of new types, if the value given is at least as restrictive as the one shown:

pattern = [\-+]?[0-9]+
maxInclusive = 0

Datatypes derived by restriction from nonPositiveInteger ��� also specify values for the following ·constraining facets·:

totalDigits
enumeration
maxExclusive
minInclusive
minExclusive
assertions

The nonPositiveInteger datatype has the following values for its ·fundamental facets·:

ordered = total
bounded = false
cardinality = countably infinite
numeric = true

3.4.14.4 Derived datatypes

The following ·built-in· datatype is ·derived· from nonPositiveInteger

negativeInteger

3.4.15 negativeInteger

[Definition:] negativeInteger is ·derived· from nonPositiveInteger by setting the value of ·maxInclusive· to be -1. This results
in the standard mathematical concept of the negative integers. The ·value space· of negativeInteger is the infinite set {...,-
2,-1}. The ·base type· of negativeInteger is nonPositiveInteger.

3.4.15.1 Lexical representation

negativeInteger has a lexical representation consisting of a negative sign ('-') followed by a non-empty finite-length sequence of
decimal digits (#x30-#x39), at least one of which ���� be a digit other than '0'. For example: -1, -12678967543233, -100000.

3.4.15.2 Canonical representation

The ·canonical representation· for negativeInteger is defined by prohibiting certain options from the Lexical representation
(§3.4.15.1). Specifically, leading zeroes are prohibited.

3.4.15.3 Facets

The negativeInteger datatype and all datatypes derived from it by restriction have the following ·constraining facets· with fixed
values; these facets ���� ��� be changed from the values shown:

fractionDigits = 0 (fixed)

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

53 of 171 03/07/2021, 05:45

whiteSpace = collapse (fixed)

The negativeInteger datatype has the following ·constraining facets· with the values shown; these facets ��� be specified in
the derivation of new types, if the value given is at least as restrictive as the one shown:

pattern = [\-+]?[0-9]+
maxInclusive = -1

Datatypes derived by restriction from negativeInteger ��� also specify values for the following ·constraining facets·:

totalDigits
enumeration
maxExclusive
minInclusive
minExclusive
assertions

The negativeInteger datatype has the following values for its ·fundamental facets·:

ordered = total
bounded = false
cardinality = countably infinite
numeric = true

3.4.16 long

[Definition:] long is ·derived· from integer by setting the value of ·maxInclusive· to be 9223372036854775807 and
·minInclusive· to be -9223372036854775808. The ·base type· of long is integer.

3.4.16.1 Lexical Representation

long has a lexical representation consisting of an optional sign followed by a non-empty finite-length sequence of decimal digits
(#x30-#x39). If the sign is omitted, "+" is assumed. For example: -1, 0, 12678967543233, +100000.

3.4.16.2 Canonical Representation

The ·canonical representation· for long is defined by prohibiting certain options from the Lexical Representation (§3.4.16.1).
Specifically, the the optional "+" sign is prohibited and leading zeroes are prohibited.

3.4.16.3 Facets

The long datatype and all datatypes derived from it by restriction have the following ·constraining facets· with fixed values;
these facets ���� ��� be changed from the values shown:

fractionDigits = 0 (fixed)
whiteSpace = collapse (fixed)

The long datatype has the following ·constraining facets· with the values shown; these facets ��� be specified in the derivation
of new types, if the value given is at least as restrictive as the one shown:

pattern = [\-+]?[0-9]+
maxInclusive = 9223372036854775807
minInclusive = -9223372036854775808

Datatypes derived by restriction from long ��� also specify values for the following ·constraining facets·:

totalDigits
enumeration
maxExclusive
minExclusive
assertions

The long datatype has the following values for its ·fundamental facets·:

ordered = total
bounded = true
cardinality = finite
numeric = true

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

54 of 171 03/07/2021, 05:45

3.4.16.4 Derived datatypes

The following ·built-in· datatype is ·derived· from long

int

3.4.17 int

[Definition:] int is ·derived· from long by setting the value of ·maxInclusive· to be 2147483647 and ·minInclusive· to be
-2147483648. The ·base type· of int is long.

3.4.17.1 Lexical Representation

int has a lexical representation consisting of an optional sign followed by a non-empty finite-length sequence of decimal digits
(#x30-#x39). If the sign is omitted, "+" is assumed. For example: -1, 0, 126789675, +100000.

3.4.17.2 Canonical representation

The ·canonical representation· for int is defined by prohibiting certain options from the Lexical Representation (§3.4.17.1).
Specifically, the the optional "+" sign is prohibited and leading zeroes are prohibited.

3.4.17.3 Facets

The int datatype and all datatypes derived from it by restriction have the following ·constraining facets· with fixed values; these
facets ���� ��� be changed from the values shown:

fractionDigits = 0 (fixed)
whiteSpace = collapse (fixed)

The int datatype has the following ·constraining facets· with the values shown; these facets ��� be specified in the derivation of
new types, if the value given is at least as restrictive as the one shown:

pattern = [\-+]?[0-9]+
maxInclusive = 2147483647
minInclusive = -2147483648

Datatypes derived by restriction from int ��� also specify values for the following ·constraining facets·:

totalDigits
enumeration
maxExclusive
minExclusive
assertions

The int datatype has the following values for its ·fundamental facets·:

ordered = total
bounded = true
cardinality = finite
numeric = true

3.4.17.4 Derived datatypes

The following ·built-in· datatype is ·derived· from int

short

3.4.18 short

[Definition:] short is ·derived· from int by setting the value of ·maxInclusive· to be 32767 and ·minInclusive· to be -32768.
The ·base type· of short is int.

3.4.18.1 Lexical representation

short has a lexical representation consisting of an optional sign followed by a non-empty finite-length sequence of decimal
digits (#x30-#x39). If the sign is omitted, "+" is assumed. For example: -1, 0, 12678, +10000.

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

55 of 171 03/07/2021, 05:45

3.4.18.2 Canonical representation

The ·canonical representation· for short is defined by prohibiting certain options from the Lexical representation (§3.4.18.1).
Specifically, the the optional "+" sign is prohibited and leading zeroes are prohibited.

3.4.18.3 Facets

The short datatype and all datatypes derived from it by restriction have the following ·constraining facets· with fixed values;
these facets ���� ��� be changed from the values shown:

fractionDigits = 0 (fixed)
whiteSpace = collapse (fixed)

The short datatype has the following ·constraining facets· with the values shown; these facets ��� be specified in the
derivation of new types, if the value given is at least as restrictive as the one shown:

pattern = [\-+]?[0-9]+
maxInclusive = 32767
minInclusive = -32768

Datatypes derived by restriction from short ��� also specify values for the following ·constraining facets·:

totalDigits
enumeration
maxExclusive
minExclusive
assertions

The short datatype has the following values for its ·fundamental facets·:

ordered = total
bounded = true
cardinality = finite
numeric = true

3.4.18.4 Derived datatypes

The following ·built-in· datatype is ·derived· from short

byte

3.4.19 byte

[Definition:] byte is ·derived· from short by setting the value of ·maxInclusive· to be 127 and ·minInclusive· to be -128. The
·base type· of byte is short.

3.4.19.1 Lexical representation

byte has a lexical representation consisting of an optional sign followed by a non-empty finite-length sequence of decimal digits
(#x30-#x39). If the sign is omitted, "+" is assumed. For example: -1, 0, 126, +100.

3.4.19.2 Canonical representation

The ·canonical representation· for byte is defined by prohibiting certain options from the Lexical representation (§3.4.19.1).
Specifically, the the optional "+" sign is prohibited and leading zeroes are prohibited.

3.4.19.3 Facets

The byte datatype and all datatypes derived from it by restriction have the following ·constraining facets· with fixed values;
these facets ���� ��� be changed from the values shown:

fractionDigits = 0 (fixed)
whiteSpace = collapse (fixed)

The byte datatype has the following ·constraining facets· with the values shown; these facets ��� be specified in the derivation
of new types, if the value given is at least as restrictive as the one shown:

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

56 of 171 03/07/2021, 05:45

pattern = [\-+]?[0-9]+
maxInclusive = 127
minInclusive = -128

Datatypes derived by restriction from byte ��� also specify values for the following ·constraining facets·:

totalDigits
enumeration
maxExclusive
minExclusive
assertions

The byte datatype has the following values for its ·fundamental facets·:

ordered = total
bounded = true
cardinality = finite
numeric = true

3.4.20 nonNegativeInteger

[Definition:] nonNegativeInteger is ·derived· from integer by setting the value of ·minInclusive· to be 0. This results in the
standard mathematical concept of the non-negative integers. The ·value space· of nonNegativeInteger is the infinite set
{0,1,2,...}. The ·base type· of nonNegativeInteger is integer.

3.4.20.1 Lexical representation

nonNegativeInteger has a lexical representation consisting of an optional sign followed by a non-empty finite-length sequence
of decimal digits (#x30-#x39). If the sign is omitted, the positive sign ('+') is assumed. If the sign is present, it ���� be "+"
except for lexical forms denoting zero, which may be preceded by a positive ('+') or a negative ('-') sign. For example: 1, 0,
12678967543233, +100000.

3.4.20.2 Canonical representation

The ·canonical representation· for nonNegativeInteger is defined by prohibiting certain options from the Lexical representation
(§3.4.20.1). Specifically, the the optional "+" sign is prohibited and leading zeroes are prohibited.

3.4.20.3 Facets

The nonNegativeInteger datatype and all datatypes derived from it by restriction have the following ·constraining facets· with
fixed values; these facets ���� ��� be changed from the values shown:

fractionDigits = 0 (fixed)
whiteSpace = collapse (fixed)

The nonNegativeInteger datatype has the following ·constraining facets· with the values shown; these facets ��� be specified
in the derivation of new types, if the value given is at least as restrictive as the one shown:

pattern = [\-+]?[0-9]+
minInclusive = 0

Datatypes derived by restriction from nonNegativeInteger ��� also specify values for the following ·constraining facets·:

totalDigits
enumeration
maxInclusive
maxExclusive
minExclusive
assertions

The nonNegativeInteger datatype has the following values for its ·fundamental facets·:

ordered = total
bounded = false
cardinality = countably infinite
numeric = true

3.4.20.4 Derived datatypes

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

57 of 171 03/07/2021, 05:45

The following ·built-in· datatypes are ·derived· from nonNegativeInteger

unsignedLong
positiveInteger

3.4.21 unsignedLong

[Definition:] unsignedLong is ·derived· from nonNegativeInteger by setting the value of ·maxInclusive· to be
18446744073709551615. The ·base type· of unsignedLong is nonNegativeInteger.

3.4.21.1 Lexical representation

unsignedLong has a lexical representation consisting of an optional sign followed by a non-empty finite-length sequence of
decimal digits (#x30-#x39). If the sign is omitted, the positive sign ('+') is assumed. If the sign is present, it ���� be '+' except
for lexical forms denoting zero, which may be preceded by a positive ('+') or a negative ('-') sign. For example: 0,
12678967543233, 100000.

3.4.21.2 Canonical representation

The ·canonical representation· for unsignedLong is defined by prohibiting certain options from the Lexical representation
(§3.4.21.1). Specifically, leading zeroes are prohibited.

3.4.21.3 Facets

The unsignedLong datatype and all datatypes derived from it by restriction have the following ·constraining facets· with fixed
values; these facets ���� ��� be changed from the values shown:

fractionDigits = 0 (fixed)
whiteSpace = collapse (fixed)

The unsignedLong datatype has the following ·constraining facets· with the values shown; these facets ��� be specified in the
derivation of new types, if the value given is at least as restrictive as the one shown:

pattern = [\-+]?[0-9]+
maxInclusive = 18446744073709551615
minInclusive = 0

Datatypes derived by restriction from unsignedLong ��� also specify values for the following ·constraining facets·:

totalDigits
enumeration
maxExclusive
minExclusive
assertions

The unsignedLong datatype has the following values for its ·fundamental facets·:

ordered = total
bounded = true
cardinality = finite
numeric = true

3.4.21.4 Derived datatypes

The following ·built-in· datatype is ·derived· from unsignedLong

unsignedInt

3.4.22 unsignedInt

[Definition:] unsignedInt is ·derived· from unsignedLong by setting the value of ·maxInclusive· to be 4294967295. The ·base
type· of unsignedInt is unsignedLong.

3.4.22.1 Lexical representation

unsignedInt has a lexical representation consisting of an optional sign followed by a non-empty finite-length sequence of

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

58 of 171 03/07/2021, 05:45

decimal digits (#x30-#x39). If the sign is omitted, the positive sign ('+') is assumed. If the sign is present, it ���� be '+' except
for lexical forms denoting zero, which may be preceded by a positive ('+') or a negative ('-') sign. For example: 0, 1267896754,
100000.

3.4.22.2 Canonical representation

The ·canonical representation· for unsignedInt is defined by prohibiting certain options from the Lexical representation
(§3.4.22.1). Specifically, leading zeroes are prohibited.

3.4.22.3 Facets

The unsignedInt datatype and all datatypes derived from it by restriction have the following ·constraining facets· with fixed
values; these facets ���� ��� be changed from the values shown:

fractionDigits = 0 (fixed)
whiteSpace = collapse (fixed)

The unsignedInt datatype has the following ·constraining facets· with the values shown; these facets ��� be specified in the
derivation of new types, if the value given is at least as restrictive as the one shown:

pattern = [\-+]?[0-9]+
maxInclusive = 4294967295
minInclusive = 0

Datatypes derived by restriction from unsignedInt ��� also specify values for the following ·constraining facets·:

totalDigits
enumeration
maxExclusive
minExclusive
assertions

The unsignedInt datatype has the following values for its ·fundamental facets·:

ordered = total
bounded = true
cardinality = finite
numeric = true

3.4.22.4 Derived datatypes

The following ·built-in· datatype is ·derived· from unsignedInt

unsignedShort

3.4.23 unsignedShort

[Definition:] unsignedShort is ·derived· from unsignedInt by setting the value of ·maxInclusive· to be 65535. The ·base type·
of unsignedShort is unsignedInt.

3.4.23.1 Lexical representation

unsignedShort has a lexical representation consisting of an optional sign followed by a non-empty finite-length sequence of
decimal digits (#x30-#x39). If the sign is omitted, the positive sign ('+') is assumed. If the sign is present, it ���� be '+' except
for lexical forms denoting zero, which may be preceded by a positive ('+') or a negative ('-') sign. For example: 0, 12678,
10000.

3.4.23.2 Canonical representation

The ·canonical representation· for unsignedShort is defined by prohibiting certain options from the Lexical representation
(§3.4.23.1). Specifically, the leading zeroes are prohibited.

3.4.23.3 Facets

The unsignedShort datatype and all datatypes derived from it by restriction have the following ·constraining facets· with fixed
values; these facets ���� ��� be changed from the values shown:

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

59 of 171 03/07/2021, 05:45

fractionDigits = 0 (fixed)
whiteSpace = collapse (fixed)

The unsignedShort datatype has the following ·constraining facets· with the values shown; these facets ��� be specified in the
derivation of new types, if the value given is at least as restrictive as the one shown:

pattern = [\-+]?[0-9]+
maxInclusive = 65535
minInclusive = 0

Datatypes derived by restriction from unsignedShort ��� also specify values for the following ·constraining facets·:

totalDigits
enumeration
maxExclusive
minExclusive
assertions

The unsignedShort datatype has the following values for its ·fundamental facets·:

ordered = total
bounded = true
cardinality = finite
numeric = true

3.4.23.4 Derived datatypes

The following ·built-in· datatype is ·derived· from unsignedShort

unsignedByte

3.4.24 unsignedByte

[Definition:] unsignedByte is ·derived· from unsignedShort by setting the value of ·maxInclusive· to be 255. The ·base type·
of unsignedByte is unsignedShort.

3.4.24.1 Lexical representation

unsignedByte has a lexical representation consisting of an optional sign followed by a non-empty finite-length sequence of
decimal digits (#x30-#x39). If the sign is omitted, the positive sign ('+') is assumed. If the sign is present, it ���� be '+' except
for lexical forms denoting zero, which may be preceded by a positive ('+') or a negative ('-') sign. For example: 0, 126, 100.

3.4.24.2 Canonical representation

The ·canonical representation· for unsignedByte is defined by prohibiting certain options from the Lexical representation
(§3.4.24.1). Specifically, leading zeroes are prohibited.

3.4.24.3 Facets

The unsignedByte datatype and all datatypes derived from it by restriction have the following ·constraining facets· with fixed
values; these facets ���� ��� be changed from the values shown:

fractionDigits = 0 (fixed)
whiteSpace = collapse (fixed)

The unsignedByte datatype has the following ·constraining facets· with the values shown; these facets ��� be specified in the
derivation of new types, if the value given is at least as restrictive as the one shown:

pattern = [\-+]?[0-9]+
maxInclusive = 255
minInclusive = 0

Datatypes derived by restriction from unsignedByte ��� also specify values for the following ·constraining facets·:

totalDigits
enumeration
maxExclusive
minExclusive

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

60 of 171 03/07/2021, 05:45

assertions

The unsignedByte datatype has the following values for its ·fundamental facets·:

ordered = total
bounded = true
cardinality = finite
numeric = true

3.4.25 positiveInteger

[Definition:] positiveInteger is ·derived· from nonNegativeInteger by setting the value of ·minInclusive· to be 1. This results in
the standard mathematical concept of the positive integer numbers. The ·value space· of positiveInteger is the infinite set
{1,2,...}. The ·base type· of positiveInteger is nonNegativeInteger.

3.4.25.1 Lexical representation

positiveInteger has a lexical representation consisting of an optional positive sign ('+') followed by a non-empty finite-length
sequence of decimal digits (#x30-#x39), at least one of which ���� be a digit other than '0'. For example: 1, 12678967543233,
+100000.

3.4.25.2 Canonical representation

The ·canonical representation· for positiveInteger is defined by prohibiting certain options from the Lexical representation
(§3.4.25.1). Specifically, the optional "+" sign is prohibited and leading zeroes are prohibited.

3.4.25.3 Facets

The positiveInteger datatype and all datatypes derived from it by restriction have the following ·constraining facets· with fixed
values; these facets ���� ��� be changed from the values shown:

fractionDigits = 0 (fixed)
whiteSpace = collapse (fixed)

The positiveInteger datatype has the following ·constraining facets· with the values shown; these facets ��� be specified in the
derivation of new types, if the value given is at least as restrictive as the one shown:

pattern = [\-+]?[0-9]+
minInclusive = 1

Datatypes derived by restriction from positiveInteger ��� also specify values for the following ·constraining facets·:

totalDigits
enumeration
maxInclusive
maxExclusive
minExclusive
assertions

The positiveInteger datatype has the following values for its ·fundamental facets·:

ordered = total
bounded = false
cardinality = countably infinite
numeric = true

3.4.26 yearMonthDuration

[Definition:] yearMonthDuration is a datatype ·derived· from duration by restricting its ·lexical representations· to instances of
yearMonthDurationLexicalRep. The ·value space· of yearMonthDuration is therefore that of duration restricted to those
whose ·seconds· property is 0. This results in a duration datatype which is totally ordered.

Note: The always-zero ·seconds· is formally retained in order that yearMonthDuration's (abstract) value space truly be a
subset of that of duration An obvious implementation optimization is to ignore the zero and implement yearMonthDuration
values simply as integer values.

3.4.26.1 The yearMonthDuration Lexical Mapping

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

61 of 171 03/07/2021, 05:45

The lexical space is reduced from that of duration by disallowing duDayFrag and duTimeFrag fragments in the ·lexical
representations·.

The yearMonthDuration Lexical Representation

[42] yearMonthDurationLexicalRep ::= '-'? 'P' duYearMonthFrag

The lexical space of yearMonthDuration consists of strings which match the regular expression '-?P((([0-9]+Y)([0-9]+M)?)|
([0-9]+M))' or the expression '-?P[0-9]+(Y([0-9]+M)?|M)', but the formal definition of yearMonthDuration uses a simpler
regular expression in its ·pattern· facet: '[^DT]*'. This pattern matches only strings of characters which contain no 'D' and no 'T',
thus restricting the ·lexical space· of duration to strings with no day, hour, minute, or seconds fields.

The ·canonical mapping· is that of duration restricted in its range to the ·lexical space· (which reduces its domain to omit any
values not in the yearMonthDuration value space).

Note: The yearMonthDuration value whose ·months· and ·seconds· are both zero has no ·canonical representation· in this
datatype since its ·canonical representation· in duration ('PT0S') is not in the ·lexical space· of yearMonthDuration.

3.4.26.2 Facets

The yearMonthDuration datatype and all datatypes derived from it by restriction have the following ·constraining facets· with
fixed values; these facets ���� ��� be changed from the values shown:

whiteSpace = collapse (fixed)

The yearMonthDuration datatype has the following ·constraining facets· with the values shown; these facets ��� be specified
in the derivation of new types, if the value given is at least as restrictive as the one shown:

pattern = [^DT]*

Datatypes derived by restriction from yearMonthDuration ��� also specify values for the following ·constraining facets·:

enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive
assertions

The yearMonthDuration datatype has the following values for its ·fundamental facets·:

ordered = partial
bounded = false
cardinality = countably infinite
numeric = false

Note: The ordered facet has the value partial even though the datatype is in fact totally ordered, because (as explained in
ordered (§4.2.1)), the value of that facet is unchanged by derivation.

3.4.27 dayTimeDuration

[Definition:] dayTimeDuration is a datatype ·derived· from duration by restricting its ·lexical representations· to instances of
dayTimeDurationLexicalRep. The ·value space· of dayTimeDuration is therefore that of duration restricted to those whose
·months· property is 0. This results in a duration datatype which is totally ordered.

3.4.27.1 The dayTimeDuration Lexical Space

The lexical space is reduced from that of duration by disallowing duYearFrag and duMonthFrag fragments in the ·lexical
representations·.

The dayTimeDuration Lexical Representation

[43] dayTimeDurationLexicalRep ::= '-'? 'P' duDayTimeFrag

The lexical space of dayTimeDuration consists of strings in the ·lexical space· of duration which match the regular expression
'[^YM]*[DT].*'; this pattern eliminates all durations with year or month fields, leaving only those with day, hour, minutes, and/or

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

62 of 171 03/07/2021, 05:45

seconds fields.

The ·canonical mapping· is that of duration restricted in its range to the ·lexical space· (which reduces its domain to omit any
values not in the dayTimeDuration value space).

3.4.27.2 Facets

The dayTimeDuration datatype and all datatypes derived from it by restriction have the following ·constraining facets· with
fixed values; these facets ���� ��� be changed from the values shown:

whiteSpace = collapse (fixed)

The dayTimeDuration datatype has the following ·constraining facets· with the values shown; these facets ��� be specified in
the derivation of new types, if the value given is at least as restrictive as the one shown:

pattern = [^YM]*(T.*)?

Datatypes derived by restriction from dayTimeDuration ��� also specify values for the following ·constraining facets·:

enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive
assertions

The dayTimeDuration datatype has the following values for its ·fundamental facets·:

ordered = partial
bounded = false
cardinality = countably infinite
numeric = false

Note: The ordered facet has the value partial even though the datatype is in fact totally ordered, because (as explained in
ordered (§4.2.1)), the value of that facet is unchanged by derivation.

3.4.28 dateTimeStamp

[Definition:] The dateTimeStamp datatype is ·derived· from dateTime by giving the value required to its explicitTimezone
facet. The result is that all values of dateTimeStamp are required to have explicit time zone offsets and the datatype is totally
ordered.

3.4.28.1 The dateTimeStamp Lexical Space

As a consequence of requiring an explicit time zone offset, the lexical space of dateTimeStamp is reduced from that of
dateTime by requiring a timezoneFrag fragment in the ·lexical representations·.

The dateTimeStamp Lexical Representation

[44] dateTimeStampLexicalRep ::= yearFrag '-' monthFrag '-' dayFrag 'T' ((hourFrag ':' minuteFrag ':' secondFrag) |
endOfDayFrag) timezoneFrag Constraint: Day-of-month Representations

Note: For details of the Day-of-month Representations (§3.3.7.2) constraint, see dateTime, from which the constraint is
inherited.

In other words, the lexical space of dateTimeStamp consists of strings which are in the ·lexical space· of dateTime and which
also match the regular expression '.*(Z|(\+|-)[0-9][0-9]:[0-9][0-9])'.

The ·lexical mapping· is that of dateTime restricted to the dateTimeStamp lexical space.

The ·canonical mapping· is that of dateTime restricted to the dateTimeStamp value space.

3.4.28.2 Facets

The dateTimeStamp datatype and all datatypes derived from it by restriction have the following ·constraining facets· with fixed
values; these facets ���� ��� be changed from the values shown:

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

63 of 171 03/07/2021, 05:45

whiteSpace = collapse (fixed)
explicitTimezone = required (fixed)

Datatypes derived by restriction from dateTimeStamp ��� also specify values for the following ·constraining facets·:

pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive
assertions

The dateTimeStamp datatype has the following values for its ·fundamental facets·:

ordered = partial
bounded = false
cardinality = countably infinite
numeric = false

Note: The ordered facet has the value partial even though the datatype is in fact totally ordered, because (as explained in
ordered (§4.2.1)), the value of that facet is unchanged by derivation.

4 Datatype components

The preceding sections of this specification have described datatypes in a way largely independent of their use in the particular
context of schema-aware processing as defined in [XSD 1.1 Part 1: Structures].

This section presents the mechanisms necessary to integrate datatypes into the context of [XSD 1.1 Part 1: Structures], mostly
in terms of the schema component abstraction introduced there. The account of datatypes given in this specification is also
intended to be useful in other contexts. Any specification or other formal system intending to use datatypes as defined above,
particularly if definition of new datatypes via facet-based restriction is envisaged, will need to provide analogous mechanisms
for some, but not necessarily all, of what follows below. For example, the {target namespace} and {final} properties are required
because of particular aspects of [XSD 1.1 Part 1: Structures] which are not in principle necessary for the use of datatypes as
defined here.

The following sections provide full details on the properties and significance of each kind of schema component involved in
datatype definitions. For each property, the kinds of values it is allowed to have is specified. Any property not identified as
optional is required to be present; optional properties which are not present have absent as their value. Any property identified
as a having a set, subset or ·list· value may have an empty value unless this is explicitly ruled out: this is not the same as
absent. Any property value identified as a superset or a subset of some set may be equal to that set, unless a proper superset
or subset is explicitly called for.

For more information on the notion of schema components, see Schema Component Details of [XSD 1.1 Part 1: Structures].

[Definition:] A component may be referred to as the owner of its properties, and of the values of those properties.

4.1 Simple Type Definition
 4.1.1 The Simple Type Definition Schema Component
 4.1.2 XML Representation of Simple Type Definition Schema Components
 4.1.3 Constraints on XML Representation of Simple Type Definition
 4.1.4 Simple Type Definition Validation Rules
 4.1.5 Constraints on Simple Type Definition Schema Components
 4.1.6 Built-in Simple Type Definitions

Simple Type Definitions provide for:

In the case of ·primitive· datatypes, identifying a datatype with its definition in this specification.

In the case of ·constructed· datatypes, defining the datatype in terms of other datatypes.

Attaching a QName to the datatype.

4.1.1 The Simple Type Definition Schema Component

The Simple Type Definition schema component has the following properties:

Schema Component: Simple Type Definition

{annotations}

A sequence of Annotation components.

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

64 of 171 03/07/2021, 05:45

{name}

An xs:NCName value. Optional.
{target namespace}

An xs:anyURI value. Optional.
{final}

A subset of {restriction, extension, list, union}
{context}

Required if {name} is absent, otherwise ���� be absent
Either an Attribute Declaration, an Element Declaration, a Complex Type Definition or a Simple Type Definition.

{base type definition}

A Type Definition component. Required.
With one exception, the {base type definition} of any Simple Type Definition is a Simple Type Definition. The
exception is ·anySimpleType·, which has anyType, a Complex Type Definition, as its {base type definition}.

{facets}

A set of Constraining Facet components.
{fundamental facets}

A set of Fundamental Facet components.
{variety}

One of {atomic, list, union}. Required for all Simple Type Definitions except ·anySimpleType·, in which it is
absent.

{primitive type definition}

A Simple Type Definition component. With one exception, required if {variety} is atomic, otherwise ���� be
absent. The exception is ·anyAtomicType·, whose {primitive type definition} is absent.
If not absent, ���� be a ·primitive· built-in definition.

{item type definition}

A Simple Type Definition component. Required if {variety} is list, otherwise ���� be absent.
The value of this property ���� be a primitive or ordinary simple type definition with {variety} = atomic, or an
ordinary simple type definition with {variety} = union whose basic members are all atomic; the value ���� ���
itself be a list type (have {variety} = list) or have any basic members which are list types.

{member type definitions}

A sequence of primitive or ordinary Simple Type Definition components.
M��� be present (but ��� be empty) if {variety} is union, otherwise ���� be absent.

The sequence may contain any primitive or ordinary simple type definition, but ���� ��� contain any special type
definitions.

Simple type definitions are identified by their {name} and {target namespace}. Except for anonymous Simple Type Definitions
(those with no {name}), Simple Type Definitions ���� be uniquely identified within a schema. Within a valid schema, each
Simple Type Definition uniquely determines one datatype. The ·value space·, ·lexical space·, ·lexical mapping·, etc., of a
Simple Type Definition are the ·value space·, ·lexical space·, etc., of the datatype uniquely determined (or "defined") by that
Simple Type Definition.

If {variety} is ·atomic· then the ·value space· of the datatype defined will be a subset of the ·value space· of {base type
definition} (which is a subset of the ·value space· of {primitive type definition}). If {variety} is ·list· then the ·value space· of the
datatype defined will be the set of (possibly empty) finite-length sequences of values from the ·value space· of {item type
definition}. If {variety} is ·union· then the ·value space· of the datatype defined will be a subset (possibly an improper subset) of
the union of the ·value spaces· of each Simple Type Definition in {member type definitions}.

If {variety} is ·atomic· then the {variety} of {base type definition} ���� be ·atomic·, unless the {base type definition} is
anySimpleType. If {variety} is ·list· then the {variety} of {item type definition} ���� be either ·atomic· or ·union·, and if {item type
definition} is ·union· then all its ·basic members· ���� be ·atomic·. If {variety} is ·union· then {member type definitions} ����
be a list of Simple Type Definitions.

The {facets} property determines the ·value space· and ·lexical space· of the datatype being defined by imposing constraints
which are to be satisfied by all valid values and ·lexical representations·.

The {fundamental facets} property provides some basic information about the datatype being defined: its cardinality, whether
an ordering is defined for it by this specification, whether it has upper and lower bounds, and whether it is numeric.

If {final} is the empty set then the type can be used in deriving other types; the explicit values restriction, list and union
prevent further derivations of Simple Type Definitions by ·facet-based restriction·, ·list· and ·union· respectively; the explicit
value extension prevents any derivation of Complex Type Definitions by extension.

The {context} property is only relevant for anonymous type definitions, for which its value is the component in which this type
definition appears as the value of a property, e.g. {item type definition} or {base type definition}.

4.1.2 XML Representation of Simple Type Definition Schema Components

The XML representation for a Simple Type Definition schema component is a <simpleType> element information item. The
correspondences between the properties of the information item and properties of the component are as follows:

XML Representation Summary: simpleType Element Information Item et al.

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

65 of 171 03/07/2021, 05:45

Property

{name}

{target
namespace}

{base type
definition}

{final}

{context}

{variety}

{facets}

<simpleType
 final = (#all | List of (list | union | restriction | extension))
 id = ID
 name = NCName
{any attributes with non-schema namespace . . .}>

 Content: (annotation?, (restriction | list | union))
</simpleType>

<restriction
 base = QName
 id = ID
{any attributes with non-schema namespace . . .}>

 Content: (annotation?, (simpleType?, (minExclusive | minInclusive | maxExclusive | maxInclusive |
totalDigits | fractionDigits | length | minLength | maxLength | enumeration | whiteSpace | pattern | assertion
| explicitTimezone | {any with namespace: ##other})*))
</restriction>

<list
 id = ID
 itemType = QName
{any attributes with non-schema namespace . . .}>

 Content: (annotation?, simpleType?)
</list>

<union
 id = ID
 memberTypes = List of QName
{any attributes with non-schema namespace . . .}>

 Content: (annotation?, simpleType*)
</union>

Simple Type Definition Schema Component

Representation

The actual value of the name [attribute], if present on the <simpleType> element, otherwise absent

The actual value of the targetNamespace [attribute] of the parent schema element information item, if
present, otherwise absent.

The appropriate case among the following:
1 If the <restriction> alternative is chosen, then the type definition resolved to by the actual value of the

base [attribute] of <restriction>, if present, otherwise the type definition corresponding to the
<simpleType> among the [children] of <restriction>.

2 If the <list> or <union> alternative is chosen, then ·anySimpleType·.

A subset of {restriction, extension, list, union}, determined as follows. [Definition:] Let FS be the
actual value of the final [attribute], if present, otherwise the actual value of the finalDefault [attribute] of
the ancestor schema element, if present, otherwise the empty string. Then the property value is the
appropriate case among the following:
1 If ·FS· is the empty string, then the empty set;
2 If ·FS· is '#all', then {restriction, extension, list, union};
3 otherwise Consider ·FS· as a space-separated list, and include restriction if 'restriction' is in that

list, and similarly for extension, list and union.

The appropriate case among the following:
1 If the name [attribute] is present, then absent
2 otherwise the appropriate case among the following:

2.1 If the parent element information item is <attribute>, then the corresponding Attribute Declaration
2.2 If the parent element information item is <element>, then the corresponding Element Declaration
2.3 If the parent element information item is <list> or <union>, then the Simple Type Definition

corresponding to the grandparent <simpleType> element information item
2.4 otherwise (the parent element information item is <restriction>), the appropriate case among the

following:
2.4.1 If the grandparent element information item is <simpleType>, then the Simple Type Definition

corresponding to the grandparent
2.4.2 otherwise (the grandparent element information item is <simpleContent>), the Simple Type

Definition which is the {content type} of the Complex Type Definition corresponding to the great-
grandparent <complexType> element information item.

If the <list> alternative is chosen, then list, otherwise if the <union> alternative is chosen, then union,
otherwise (the <restriction> alternative is chosen) the {variety} of the {base type definition}.

The appropriate case among the following:
1 If the <restriction> alternative is chosen, then the set of Constraining Facet components obtained by

overlaying the {facets} of the {base type definition} with the set of Constraining Facet components
corresponding to those [children] of <restriction> which specify facets, as defined in Schema
Component Constraint: Simple Type Restriction (Facets) .

2 If the <list> alternative is chosen, then a set with one member, a whiteSpace facet with {value} =
collapse and {fixed} = true.

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

66 of 171 03/07/2021, 05:45

{fundamental
facets}

{annotations}

Property

{primitive
type
definition}

Property

{item type
definition}

Property

{member

3 otherwise the empty set

Based on {variety}, {facets}, {base type definition} and {member type definitions}, a set of Fundamental
Facet components, one each as specified in The ordered Schema Component (§4.2.1.1), The bounded
Schema Component (§4.2.2.1), The cardinality Schema Component (§4.2.3.1) and The numeric Schema
Component (§4.2.4.1).

The annotation mapping of the set of elements containing the <simpleType>, and the <restriction>, the
<list>, or the <union> [child], whichever is present, as defined in section XML Representation of
Annotation Schema Components of [XSD 1.1 Part 1: Structures].

[Definition:] The ancestors of a type definition are its {base type definition} and the ·ancestors· of its {base type
definition}. (The ancestors of a Simple Type Definition T in the type hierarchy are themselves type definitions; they are
distinct from the XML elements which may be ancestors, in the XML document hierarchy, of the <simpleType> element
which declares T.)

If the {variety} is atomic, the following additional property mapping also applies:

Atomic Simple Type Definition Schema Component

Representation

From among the ·ancestors· of this Simple Type Definition, that Simple Type Definition which
corresponds to a ·primitive· datatype.

Example

An electronic commerce schema might define a datatype called 'SKU' (the barcode number that appears on products)
from the ·built-in· datatype string by supplying a value for the ·pattern· facet.

<simpleType name='SKU'>
 <restriction base='string'>
 <pattern value='\d{3}-[A-Z]{2}'/>
 </restriction>
</simpleType>

In this case, 'SKU' is the name of the new ·user-defined· datatype, string is its ·base type· and ·pattern· is the facet.

If the {variety} is list, the following additional property mappings also apply:

List Simple Type Definition Schema Component

Representation

The appropriate case among the following:
1 If the {base type definition} is ·anySimpleType·, then the Simple Type Definition (a) resolved to by the

actual value of the itemType [attribute] of <list>, or (b) corresponding to the <simpleType> among the
[children] of <list>, whichever is present.

Note: In this case, a <list> element will invariably be present; it will invariably have either an itemType
[attribute] or a <simpleType> [child], but not both.

2 otherwise (that is, the {base type definition} is not ·anySimpleType·), the {item type definition} of the
{base type definition}.

Note: In this case, a <restriction> element will invariably be present.

Example

A system might want to store lists of floating point values.

<simpleType name='listOfFloat'>
 <list itemType='float'/>
</simpleType>

In this case, listOfFloat is the name of the new ·user-defined· datatype, float is its ·item type· and ·list· is the derivation
method.

If the {variety} is union, the following additional property mappings also apply:

Union Simple Type Definition Schema Component

Representation

The appropriate case among the following:

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

67 of 171 03/07/2021, 05:45

type
definitions}

1 If the {base type definition} is ·anySimpleType·, then the sequence of (a) the Simple Type Definitions
(a) resolved to by the items in the actual value of the memberTypes [attribute] of <union>, if any, and (b)
those corresponding to the <simpleType>s among the [children] of <union>, if any, in order.

Note: In this case, a <union> element will invariably be present; it will invariably have either a
memberTypes [attribute] or one or more <simpleType> [children], or both.

2 otherwise (that is, the {base type definition} is not ·anySimpleType·), the {member type definitions} of
the {base type definition}.

Note: In this case, a <restriction> element will invariably be present.

Example

As an example, taken from a typical display oriented text markup language, one might want to express font sizes as
an integer between 8 and 72, or with one of the tokens "small", "medium" or "large". The ·union· Simple Type
Definition below would accomplish that.

<xs:attribute name="size">
 <xs:simpleType>
 <xs:union>
 <xs:simpleType>
 <xs:restriction base="xs:positiveInteger">
 <xs:minInclusive value="8"/>
 <xs:maxInclusive value="72"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="small"/>
 <xs:enumeration value="medium"/>
 <xs:enumeration value="large"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:union>
 </xs:simpleType>
</xs:attribute>

<p>
A header
</p>
<p>
this is a test
</p>

A datatype can be ·constructed· from a ·primitive· datatype or an ·ordinary· datatype by one of three means: by ·facet-based
restriction·, by ·list· or by ·union·.

4.1.3 Constraints on XML Representation of Simple Type Definition

Schema Representation Constraint: itemType attribute or simpleType child

Either the itemType [attribute] or the <simpleType> [child] of the <list> element ���� be present, but not both.

Schema Representation Constraint: base attribute or simpleType child

Either the base [attribute] or the simpleType [child] of the <restriction> element ���� be present, but not both.

Schema Representation Constraint: memberTypes attribute or simpleType children

Either the memberTypes [attribute] of the <union> element ���� be non-empty or there ���� be at least one simpleType
[child].

4.1.4 Simple Type Definition Validation Rules

Validation Rule: Facet Valid

A value in a ·value space· is facet-valid with respect to a ·constraining facet· component if and only if:

1 the value is facet-valid with respect to the particular ·constraining facet· as specified below.

Validation Rule: Datatype Valid

A ·literal· is datatype-valid with respect to a Simple Type Definition if and only if it is a member of the ·lexical space· of the
corresponding datatype.

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

68 of 171 03/07/2021, 05:45

Note: Since every value in the ·value space· is denoted by some ·literal·, and every ·literal· in the ·lexical space· maps to
some value, the requirement that the ·literal· be in the ·lexical space· entails the requirement that the value it maps to
should fulfill all of the constraints imposed by the {facets} of the datatype. If the datatype is a ·list·, the Datatype Valid
constraint also entails that each whitespace-delimited token in the list be datatype-valid against the ·item type· of the list. If
the datatype is a ·union·, the Datatype Valid constraint entails that the ·literal· be datatype-valid against at least one of the
·member types·.

That is, the constraints on Simple Type Definitions and on datatype ·derivation· defined in this specification have as a
consequence that a ·literal· L is datatype-valid with respect to a Simple Type Definition T if and only if either T corresponds
to a ·special· datatype or all of the following are true:
1 If there is a pattern in {facets}, then L is pattern valid (§4.3.4.4) with respect to the pattern. If there are other ·lexical·

facets in {facets}, then L is facet-valid with respect to them.
2 The appropriate case among the following is true:

2.1 If the {variety} of T is ·atomic·, then L is in the ·lexical space· of the {primitive type definition} of T, as defined in the
appropriate documentation. Let V be the member of the ·value space· of the {primitive type definition} of T mapped to
by L, as defined in the appropriate documentation.

Note: For ·built-in· ·primitives·, the "appropriate documentation" is the relevant section of this specification. For
·implementation-defined· ·primitives·, it is the normative specification of the ·primitive·, which will typically be
included in, or referred to from, the implementation's documentation.

2.2 If the {variety} of T is ·list·, then each space-delimited substring of L is Datatype Valid with respect to the {item type
definition} of T. Let V be the sequence consisting of the values identified by Datatype Valid for each of those
substrings, in order.

2.3 If the {variety} of T is ·union·, then L is Datatype Valid with respect to at least one member of the {member type
definitions} of T. Let B be the ·active basic member· of T for L. Let V be the value identified by Datatype Valid for L
with respect to B.

3 V, as determined by the appropriate sub-clause of clause 2 above, is Facet Valid (§4.1.4) with respect to each member
of the {facets} of T which is a ·value-based· (and not a ·pre-lexical· or ·lexical·) facet.

Note that whiteSpace facets and other ·pre-lexical· facets do not take part in checking Datatype Valid. In cases where this
specification is used in conjunction with schema-validation of XML documents, such facets are used to normalize infoset
values before the normalized results are checked for datatype validity. In the case of unions the ·pre-lexical· facets to use
are those associated with B in clause 2.3 above. When more than one ·pre-lexical· facet applies, the whiteSpace facet is
applied first; the order in which ·implementation-defined· facets are applied is ·implementation-defined·.

4.1.5 Constraints on Simple Type Definition Schema Components

Schema Component Constraint: Applicable Facets

The ·constraining facets· which are allowed to be members of {facets} depend on the {variety} and {primitive type definition}
of the type, as follows:

If {variety} is absent, then no facets are applicable. (This is true for anySimpleType.)

If {variety} is list, then the applicable facets are assertions, length, minLength, maxLength, pattern, enumeration, and
whiteSpace.

If {variety} is union, then the applicable facets are pattern, enumeration, and assertions.

If {variety} is atomic, and {primitive type definition} is absent then no facets are applicable. (This is true for anyAtomicType.)

In all other cases ({variety} is atomic and {primitive type definition} is not absent), then the applicable facets are shown in the
table below.

{primitive type
definition}

applicable {facets}

string length, minLength, maxLength, pattern, enumeration, whiteSpace, assertions

boolean pattern, whiteSpace, assertions

float
pattern, enumeration, whiteSpace, maxInclusive, maxExclusive, minInclusive, minExclusive,
assertions

double
pattern, enumeration, whiteSpace, maxInclusive, maxExclusive, minInclusive, minExclusive,
assertions

decimal
totalDigits, fractionDigits, pattern, whiteSpace, enumeration, maxInclusive, maxExclusive,
minInclusive, minExclusive, assertions

duration
pattern, enumeration, whiteSpace, maxInclusive, maxExclusive, minInclusive, minExclusive,
assertions

dateTime
pattern, enumeration, whiteSpace, maxInclusive, maxExclusive, minInclusive, minExclusive,
assertions, explicitTimezone

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

69 of 171 03/07/2021, 05:45

Property

{name}

{target
namespace}

{final}

{context}

{base type
definition}

{facets}

{fundamental
facets}

{variety}

{primitive type
definition}

{item type
definition}

{member type
definitions}

{annotations}

time
pattern, enumeration, whiteSpace, maxInclusive, maxExclusive, minInclusive, minExclusive,
assertions, explicitTimezone

date
pattern, enumeration, whiteSpace, maxInclusive, maxExclusive, minInclusive, minExclusive,
assertions, explicitTimezone

gYearMonth
pattern, enumeration, whiteSpace, maxInclusive, maxExclusive, minInclusive, minExclusive,
assertions, explicitTimezone

gYear
pattern, enumeration, whiteSpace, maxInclusive, maxExclusive, minInclusive, minExclusive,
assertions, explicitTimezone

gMonthDay
pattern, enumeration, whiteSpace, maxInclusive, maxExclusive, minInclusive, minExclusive,
assertions, explicitTimezone

gDay
pattern, enumeration, whiteSpace, maxInclusive, maxExclusive, minInclusive, minExclusive,
assertions, explicitTimezone

gMonth
pattern, enumeration, whiteSpace, maxInclusive, maxExclusive, minInclusive, minExclusive,
assertions, explicitTimezone

hexBinary length, minLength, maxLength, pattern, enumeration, whiteSpace, assertions

base64Binary length, minLength, maxLength, pattern, enumeration, whiteSpace, assertions

anyURI length, minLength, maxLength, pattern, enumeration, whiteSpace, assertions

QName length, minLength, maxLength, pattern, enumeration, whiteSpace, assertions

NOTATION length, minLength, maxLength, pattern, enumeration, whiteSpace, assertions

Note: For any ·implementation-defined· primitive types, it is ·implementation-defined· which constraining facets are
applicable to them.

Similarly, for any ·implementation-defined· constraining facets, it is ·implementation-defined· which ·primitives· they
apply to.

4.1.6 Built-in Simple Type Definitions

The Simple Type Definition of anySimpleType is present in every schema. It has the following properties:

Simple type definition of anySimpleType

Value

'anySimpleType'

'http://www.w3.org/2001/XMLSchema'

The empty set

absent

anyType

The empty set

The empty set

absent

absent

absent

absent

The empty sequence

The definition of anySimpleType is the root of the Simple Type Definition hierarchy; as such it mediates between the other
simple type definitions, which all eventually trace back to it via their {base type definition} properties, and the definition of
anyType, which is its {base type definition}.

The Simple Type Definition of anyAtomicType is present in every schema. It has the following properties:

Simple type definition of anyAtomicType

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

70 of 171 03/07/2021, 05:45

Property

{name}

{target
namespace}

{final}

{context}

{base type
definition}

{facets}

{fundamental
facets}

{variety}

{primitive type
definition}

{item type
definition}

{member type
definitions}

{annotations}

Property

{name}

{target
namespace}

{base type
definition}

{final}

{variety}

{primitive type
definition}

{facets}

{fundamental
facets}

{context}

{item type
definition}

{member type
definitions}

{annotations}

Value

'anyAtomicType'

'http://www.w3.org/2001/XMLSchema'

The empty set

absent

anySimpleType

The empty set

The empty set

atomic

absent

absent

absent

The empty sequence

Simple type definitions for all the built-in primitive datatypes, namely string, boolean, float, double, decimal, dateTime, duration,
time, date, gMonth, gMonthDay, gDay, gYear, gYearMonth, hexBinary, base64Binary, anyURI are present by definition in every
schema. All have a very similar structure, with only the {name}, the {primitive type definition} (which is self-referential), the
{fundamental facets}, and in one case the {facets} varying from one to the next:

Simple Type Definition corresponding to the built-in primitive datatypes

Value

[as appropriate]

'http://www.w3.org/2001/XMLSchema'

anyAtomicType Definition

The empty set

atomic

[this Simple Type Definition itself]

{a whiteSpace facet with {value} = collapse and {fixed} = true in all cases except string, which has
{value} = preserve and {fixed} = false}

[as appropriate]

absent

absent

absent

The empty sequence

·Implementation-defined· ·primitives· ���� have a Simple Type Definition with the values shown above, with the following
exceptions.

1. The {facets} property ���� contain a whiteSpace facet, the value of which is ·implementation-defined·. It ��� contain
other facets, whether defined in this specification or ·implementation-defined·.

2. The value of {fundamental facets} is ·implementation-defined·.

3. The value of {annotations} ��� be empty, but need not be.

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

71 of 171 03/07/2021, 05:45

Property

{name}

{target
namespace}

{base type
definition}

{final}

{variety}

{primitive type
definition}

{facets}

{fundamental
facets}

{context}

{item type
definition}

{member type
definitions}

{annotations}

Note: It is a consequence of the rule just given that each ·implementation-defined· ·primitive· will have an expanded name
by which it can be referred to.

Note: ·Implementation-defined· datatypes will normally have a value other than 'http://www.w3.org/2001/XMLSchema' for
the {target namespace} property. That namespace is controlled by the W3C and datatypes will be added to it only by W3C
or its designees.

Similarly, Simple Type Definitions for all the built-in ·ordinary· datatypes are present by definition in every schema, with
properties as specified in Other Built-in Datatypes (§3.4) and as represented in XML in Illustrative XML representations for the
built-in ordinary type definitions (§C.2).

Simple Type Definition corresponding to the built-in ordinary datatypes

Value

[as appropriate]

'http://www.w3.org/2001/XMLSchema'

[as specified in the appropriate sub-section of Other Built-in Datatypes (§3.4)]

The empty set

[atomic or list, as specified in the appropriate sub-section of Other Built-in Datatypes (§3.4)]

[if {variety} is atomic, then the {primitive type definition} of the {base type definition}, otherwise
absent]

[as specified in the appropriate sub-section of Other Built-in Datatypes (§3.4)]

[as specified in the appropriate sub-section of Other Built-in Datatypes (§3.4)]

absent

if {variety} is atomic, then absent, otherwise as specified in the appropriate sub-section of Other
Built-in Datatypes (§3.4)]

absent

As shown in the XML representations of the ordinary built-in datatypes in Illustrative XML
representations for the built-in ordinary type definitions (§C.2)

4.2 Fundamental Facets
 4.2.1 ordered
 4.2.1.1 The ordered Schema Component
 4.2.2 bounded
 4.2.2.1 The bounded Schema Component
 4.2.3 cardinality
 4.2.3.1 The cardinality Schema Component
 4.2.4 numeric
 4.2.4.1 The numeric Schema Component

[Definition:] Each fundamental facet is a schema component that provides a limited piece of information about some aspect
of each datatype. All ·fundamental facet· components are defined in this section. For example, cardinality is a ·fundamental
facet·. Most ·fundamental facets· are given a value fixed with each primitive datatype's definition, and this value is not changed
by subsequent ·derivations· (even when it would perhaps be reasonable to expect an application to give a more accurate value
based on the constraining facets used to define the ·derivation·). The cardinality and bounded facets are exceptions to this
rule; their values may change as a result of certain ·derivations·.

Note: Schema components are identified by kind. "Fundamental" is not a kind of component. Each kind of ·fundamental
facet· ("ordered", "bounded", etc.) is a separate kind of schema component.

A ·fundamental facet· can occur only in the {fundamental facets} of a Simple Type Definition, and this is the only place where
·fundamental facet· components occur. Each kind of ·fundamental facet· component occurs (once) in each Simple Type
Definition's {fundamental facets} set.

Note: The value of any ·fundamental facet· component can always be calculated from other properties of its ·owner·.
Fundamental facets are not required for schema processing, but some applications use them.

4.2.1 ordered

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

72 of 171 03/07/2021, 05:45

For some datatypes, this document specifies an order relation for their value spaces (see Order (§2.2.3)); the ordered facet
reflects this. It takes the values total, partial, and false, with the meanings described below. For the ·primitive· datatypes, the
value of the ordered facet is specified in Fundamental Facets (§F.1). For ·ordinary· datatypes, the value is inherited without
change from the ·base type·. For a ·list·, the value is always false; for a ·union·, the value is computed as described below.

A false value means no order is prescribed; a total value assures that the prescribed order is a total order; a partial value
means that the prescribed order is a partial order, but not (for the primitive type in question) a total order.

Note: The value false in the ordered facet does not mean no partial or total ordering exists for the value space, only that
none is specified by this document for use in checking upper and lower bounds. Mathematically, any set of values
possesses at least one trivial partial ordering, in which every value pair that is not equal is incomparable.

Note: When new datatypes are derived from datatypes with partial orders, the constraints imposed can sometimes result
in a value space for which the ordering is total, or trivial. The value of the ordered facet is not, however, changed to reflect
this. The value partial should therefore be interpreted with appropriate caution.

[Definition:] A ·value space·, and hence a datatype, is said to be ordered if some members of the ·value space· are drawn
from a ·primitive· datatype for which the table in Fundamental Facets (§F.1) specifies the value total or partial for the ordered
facet.

Note: Some of the "real-world" datatypes which are the basis for those defined herein are ordered in some applications,
even though no order is prescribed for schema-processing purposes. For example, boolean is sometimes ordered, and
string and ·list· datatypes ·constructed· from ordered ·atomic· datatypes are sometimes given "lexical" orderings. They are
not ordered for schema-processing purposes.

4.2.1.1 The ordered Schema Component

Schema Component: ordered, a kind of Fundamental Facet

{value}

One of {false, partial, total}. Required.

{value} depends on the ·owner's· {variety}, {facets}, and {member type definitions}. The appropriate case among the following
���� be true:
1 If the ·owner's· {variety} is atomic, then the appropriate case among the following ���� be true:

1.1 If the ·owner· is ·primitive·, then {value} is as specified in the table in Fundamental Facets (§F.1).
1.2 otherwise {value} is the ·owner's· {base type definition}'s ordered {value}.

2 If the ·owner's· {variety} is list, then {value} is false.
3 otherwise the ·owner's· {variety} is union; the appropriate case among the following ���� be true:

3.1 If every ·basic member· of the ·owner· has {variety} atomic and has the same {primitive type definition}, then {value} is
the same as the ordered component's {value} in that primitive type definition's {fundamental facets}.

3.2 If each member of the ·owner's· {member type definitions} has an ordered component in its {fundamental facets} whose
{value} is false, then {value} is false.

3.3 otherwise {value} is partial.

4.2.2 bounded

Some ordered datatypes have the property that there is one value greater than or equal to every other value, and another that
is less than or equal to every other value. (In the case of ·ordinary· datatypes, these two values are not necessarily in the
value space of the derived datatype, but they will always be in the value space of the primitive datatype from which they have
been derived.) The bounded facet value is boolean and is generally true for such bounded datatypes. However, it will remain
false when the mechanism for imposing such a bound is difficult to detect, as, for example, when the boundedness occurs
because of derivation using a pattern component.

4.2.2.1 The bounded Schema Component

Schema Component: bounded, a kind of Fundamental Facet

{value}

An xs:boolean value. Required.

{value} depends on the ·owner's· {variety}, {facets} and {member type definitions}.

When the ·owner· is ·primitive·, {value} is as specified in the table in Fundamental Facets (§F.1). Otherwise, when the
·owner's· {variety} is atomic, if one of minInclusive or minExclusive and one of maxInclusive or maxExclusive are members of
the ·owner's· {facets} set, then {value} is true; otherwise {value} is false.

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

73 of 171 03/07/2021, 05:45

When the ·owner's· {variety} is list, {value} is false.

When the ·owner's· {variety} is union, if {value} is true for every member of the ·owner's· {member type definitions} set and all
of the ·owner's· ·basic members· have the same {primitive type definition}, then {value} is true; otherwise {value} is false.

4.2.3 cardinality

Every value space has a specific number of members. This number can be characterized as finite or infinite. (Currently there
are no datatypes with infinite value spaces larger than countable.) The cardinality facet value is either finite or countably
infinite and is generally finite for datatypes with finite value spaces. However, it will remain countably infinite when the
mechanism for causing finiteness is difficult to detect, as, for example, when finiteness occurs because of a derivation using a
pattern component.

4.2.3.1 The cardinality Schema Component

Schema Component: cardinality, a kind of Fundamental Facet

{value}

One of {finite, countably infinite}. Required.

{value} depends on the ·owner's· {variety}, {facets}, and {member type definitions}.

When the ·owner· is ·primitive·, {value} is as specified in the table in Fundamental Facets (§F.1). Otherwise, when the
·owner's· {variety} is atomic, {value} is countably infinite unless any of the following conditions are true, in which case {value}
is finite:

1. the ·owner's· {base type definition}'s cardinality {value} is finite,

2. at least one of length, maxLength, or totalDigits is a member of the ·owner's· {facets} set,

3. all of the following are true:

a. one of minInclusive or minExclusive is a member of the ·owner's· {facets} set

b. one of maxInclusive or maxExclusive is a member of the ·owner's· {facets} set

c. either of the following are true:

i. fractionDigits is a member of the ·owner's· {facets} set

ii. {primitive type definition} is one of date, gYearMonth, gYear, gMonthDay, gDay or gMonth

When the ·owner's· {variety} is list, if length or both minLength and maxLength are members of the ·owner's· {facets} set and
the ·owner's· {item type definition}'s cardinality {value} is finite then {value} is finite; otherwise {value} is countably infinite.

When the ·owner's· {variety} is union, if cardinality's {value} is finite for every member of the ·owner's· {member type
definitions} set then {value} is finite, otherwise {value} is countably infinite.

4.2.4 numeric

Some value spaces are made up of things that are conceptually numeric, others are not. The numeric facet value indicates
which are considered numeric.

4.2.4.1 The numeric Schema Component

Schema Component: numeric, a kind of Fundamental Facet

{value}

An xs:boolean value. Required.

{value} depends on the ·owner's· {variety}, {facets}, {base type definition} and {member type definitions}.

When the ·owner· is ·primitive·, {value} is as specified in the table in Fundamental Facets (§F.1). Otherwise, when the
·owner's· {variety} is atomic, {value} is inherited from the ·owner's· {base type definition}'s numeric{value}.

When the ·owner's· {variety} is list, {value} is false.

When the ·owner's· {variety} is union, if numeric's {value} is true for every member of the ·owner's· {member type definitions}

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

74 of 171 03/07/2021, 05:45

set then {value} is true, otherwise {value} is false.

4.3 Constraining Facets
 4.3.1 length
 4.3.1.1 The length Schema Component
 4.3.1.2 XML Representation of length Schema Components
 4.3.1.3 length Validation Rules
 4.3.1.4 Constraints on length Schema Components
 4.3.2 minLength
 4.3.2.1 The minLength Schema Component
 4.3.2.2 XML Representation of minLength Schema Component
 4.3.2.3 minLength Validation Rules
 4.3.2.4 Constraints on minLength Schema Components
 4.3.3 maxLength
 4.3.3.1 The maxLength Schema Component
 4.3.3.2 XML Representation of maxLength Schema Components
 4.3.3.3 maxLength Validation Rules
 4.3.3.4 Constraints on maxLength Schema Components
 4.3.4 pattern
 4.3.4.1 The pattern Schema Component
 4.3.4.2 XML Representation of pattern Schema Components
 4.3.4.3 Constraints on XML Representation of pattern
 4.3.4.4 pattern Validation Rules
 4.3.4.5 Constraints on pattern Schema Components
 4.3.5 enumeration
 4.3.5.1 The enumeration Schema Component
 4.3.5.2 XML Representation of enumeration Schema Components
 4.3.5.3 Constraints on XML Representation of enumeration
 4.3.5.4 enumeration Validation Rules
 4.3.5.5 Constraints on enumeration Schema Components
 4.3.6 whiteSpace
 4.3.6.1 The whiteSpace Schema Component
 4.3.6.2 XML Representation of whiteSpace Schema Components
 4.3.6.3 whiteSpace Validation Rules
 4.3.6.4 Constraints on whiteSpace Schema Components
 4.3.7 maxInclusive
 4.3.7.1 The maxInclusive Schema Component
 4.3.7.2 XML Representation of maxInclusive Schema Components
 4.3.7.3 maxInclusive Validation Rules
 4.3.7.4 Constraints on maxInclusive Schema Components
 4.3.8 maxExclusive
 4.3.8.1 The maxExclusive Schema Component
 4.3.8.2 XML Representation of maxExclusive Schema Components
 4.3.8.3 maxExclusive Validation Rules
 4.3.8.4 Constraints on maxExclusive Schema Components
 4.3.9 minExclusive
 4.3.9.1 The minExclusive Schema Component
 4.3.9.2 XML Representation of minExclusive Schema Components
 4.3.9.3 minExclusive Validation Rules
 4.3.9.4 Constraints on minExclusive Schema Components
 4.3.10 minInclusive
 4.3.10.1 The minInclusive Schema Component
 4.3.10.2 XML Representation of minInclusive Schema Components
 4.3.10.3 minInclusive Validation Rules
 4.3.10.4 Constraints on minInclusive Schema Components
 4.3.11 totalDigits
 4.3.11.1 The totalDigits Schema Component
 4.3.11.2 XML Representation of totalDigits Schema Components
 4.3.11.3 totalDigits Validation Rules
 4.3.11.4 Constraints on totalDigits Schema Components
 4.3.12 fractionDigits
 4.3.12.1 The fractionDigits Schema Component
 4.3.12.2 XML Representation of fractionDigits Schema Components
 4.3.12.3 fractionDigits Validation Rules
 4.3.12.4 Constraints on fractionDigits Schema Components
 4.3.13 Assertions
 4.3.13.1 The assertions Schema Component
 4.3.13.2 XML Representation of assertions Schema Components
 4.3.13.3 Assertions Validation Rules
 4.3.13.4 Constraints on assertions Schema Components

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

75 of 171 03/07/2021, 05:45

 4.3.14 explicitTimezone
 4.3.14.1 The explicitTimezone Schema Component
 4.3.14.2 XML Representation of explicitTimezone Schema Components
 4.3.14.3 explicitTimezone Validation Rules
 4.3.14.4 Constraints on explicitTimezone Schema Components

[Definition:] Constraining facets are schema components whose values may be set or changed during ·derivation· (subject to
facet-specific controls) to control various aspects of the derived datatype. All ·constraining facet· components defined by this
specification are defined in this section. For example, whiteSpace is a ·constraining facet·. ·Constraining Facets· are given a
value as part of the ·derivation· when an ·ordinary· datatype is defined by ·restricting· a ·primitive· or ·ordinary· datatype; a few
·constraining facets· have default values that are also provided for ·primitive· datatypes.

Note: Schema components are identified by kind. "Constraining" is not a kind of component. Each kind of ·constraining
facet· ("whiteSpace", "length", etc.) is a separate kind of schema component.

This specification distinguishes three kinds of constraining facets:

[Definition:] A constraining facet which is used to normalize an initial ·literal· before checking to see whether the resulting
character sequence is a member of a datatype's ·lexical space· is a pre-lexical facet.

This specification defines just one ·pre-lexical· facet: whiteSpace.

[Definition:] A constraining facet which directly restricts the ·lexical space· of a datatype is a lexical facet.

This specification defines just one ·lexical· facet: pattern.

Note: As specified normatively elsewhere, ·lexical· facets can have an indirect effect on the ·value space·: if every
lexical representation of a value is removed from the ·lexical space·, the value itself is removed from the ·value
space·.

[Definition:] A constraining facet which directly restricts the ·value space· of a datatype is a value-based facet.

Most of the constraining facets defined by this specification are ·value-based· facets.

Note: As specified normatively elsewhere, ·value-based· facets can have an indirect effect on the ·lexical space·: if a
value is removed from the ·value space·, its lexical representations are removed from the ·lexical space·.

Conforming processors ���� support all the facets defined in this section. It is ·implementation-defined· whether a processor
supports other constraining facets. [Definition:] An ·constraining facet· which is not supported by the processor in use is
unknown.

Note: A reference to an ·unknown· facet might be a reference to an ·implementation-defined· facet supported by some
other processor, or might be the result of a typographic error, or might have some other explanation.

The descriptions of individual facets given below include both constraints on Simple Type Definition components and rules for
checking the datatype validity of a given literal against a given datatype. The validation rules typically depend upon having a full
knowledge of the datatype; full knowledge of the datatype, in turn, depends on having a fully instantiated Simple Type
Definition. A full instantiation of the Simple Type Definition, and the checking of the component constraints, require knowledge
of the ·base type·. It follows that if a datatype's ·base type· is ·unknown·, the Simple Type Definition defining the datatype will
be incompletely instantiated, and the datatype itself will be ·unknown·. Similarly, any datatype defined using an ·unknown·
·constraining facet· will be ·unknown·. It is not possible to perform datatype validation as defined here using ·unknown·
datatypes.

Note: The preceding paragraph does not forbid implementations from attempting to make use of such partial information
as they have about ·unknown· datatypes. But the exploitation of such partial knowledge is not datatype validity checking
as defined here and is to be distinguished from it in the implementation's documentation and interface.

4.3.1 length

[Definition:] length is the number of units of length, where units of length varies depending on the type that is being ·derived·
from. The value of length ���� be a nonNegativeInteger.

For string and datatypes ·derived· from string, length is measured in units of characters as defined in [XML]. For anyURI,
length is measured in units of characters (as for string). For hexBinary and base64Binary and datatypes ·derived· from them,
length is measured in octets (8 bits) of binary data. For datatypes ·constructed· by ·list·, length is measured in number of list
items.

Note: For string and datatypes ·derived· from string, length will not always coincide with "string length" as perceived by
some users or with the number of storage units in some digital representation. Therefore, care should be taken when
specifying a value for length and in attempting to infer storage requirements from a given value for length.

·length· provides for:

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

76 of 171 03/07/2021, 05:45

Property

{value}

{fixed}

{annotations}

Constraining a ·value space· to values with a specific number of units of length, where units of length varies depending
on {base type definition}.

Example

The following is the definition of a ·user-defined· datatype to represent product codes which must be exactly 8 characters in
length. By fixing the value of the length facet we ensure that types derived from productCode can change or set the values
of other facets, such as pattern, but cannot change the length.

<simpleType name='productCode'>
 <restriction base='string'>
 <length value='8' fixed='true'/>
 </restriction>
</simpleType>

4.3.1.1 The length Schema Component

Schema Component: length, a kind of Constraining Facet

{annotations}

A sequence of Annotation components.
{value}

An xs:nonNegativeInteger value. Required.
{fixed}

An xs:boolean value. Required.

If {fixed} is true, then types for which the current type is the {base type definition} cannot specify a value for length other than
{value}.

Note: The {fixed} property is defined for parallelism with other facets and for compatibility with version 1.0 of this
specification. But it is a consequence of length valid restriction (§4.3.1.4) that the value of the length facet cannot be
changed, regardless of whether {fixed} is true or false.

4.3.1.2 XML Representation of length Schema Components

The XML representation for a length schema component is a <length> element information item. The correspondences
between the properties of the information item and properties of the component are as follows:

XML Representation Summary: length Element Information Item

<length
 fixed = boolean : false
 id = ID
value = nonNegativeInteger
{any attributes with non-schema namespace . . .}>

 Content: (annotation?)
</length>

length Schema Component

Representation

The actual value of the value [attribute]

The actual value of the fixed [attribute], if present, otherwise false

The annotation mapping of the <length> element, as defined in section XML Representation of
Annotation Schema Components of [XSD 1.1 Part 1: Structures].

4.3.1.3 length Validation Rules

Validation Rule: Length Valid

A value in a ·value space· is facet-valid with respect to ·length· if and only if:

1 if the {variety} is ·atomic· then
1.1 if {primitive type definition} is string or anyURI, then the length of the value, as measured in characters ���� be equal

to {value};
1.2 if {primitive type definition} is hexBinary or base64Binary, then the length of the value, as measured in octets of the

binary data, ���� be equal to {value};
1.3 if {primitive type definition} is QName or NOTATION, then any {value} is facet-valid.

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

77 of 171 03/07/2021, 05:45

2 if the {variety} is ·list·, then the length of the value, as measured in list items, ���� be equal to {value}

The use of ·length· on QName, NOTATION, and datatypes ·derived· from them is deprecated. Future versions of this
specification may remove this facet for these datatypes.

4.3.1.4 Constraints on length Schema Components

Schema Component Constraint: length and minLength or maxLength

If length is a member of {facets} then
1 It is an error for minLength to be a member of {facets} unless

1.1 the {value} of minLength <= the {value} of length and
1.2 there is some type definition from which this one is derived by one or more ·restriction· steps in which minLength has

the same {value} and length is not specified.
2 It is an error for maxLength to be a member of {facets} unless

2.1 the {value} of length <= the {value} of maxLength and
2.2 there is some type definition from which this one is derived by one or more restriction steps in which maxLength has

the same {value} and length is not specified.

Schema Component Constraint: length valid restriction

It is an ·error· if length is among the members of {facets} of {base type definition} and {value} is not equal to the {value} of the
parent length.

4.3.2 minLength

[Definition:] minLength is the minimum number of units of length, where units of length varies depending on the type that is
being ·derived· from. The value of minLength ���� be a nonNegativeInteger.

For string and datatypes ·derived· from string, minLength is measured in units of characters as defined in [XML]. For
hexBinary and base64Binary and datatypes ·derived· from them, minLength is measured in octets (8 bits) of binary data. For
datatypes ·constructed· by ·list·, minLength is measured in number of list items.

Note: For string and datatypes ·derived· from string, minLength will not always coincide with "string length" as perceived
by some users or with the number of storage units in some digital representation. Therefore, care should be taken when
specifying a value for minLength and in attempting to infer storage requirements from a given value for minLength.

·minLength· provides for:

Constraining a ·value space· to values with at least a specific number of units of length, where units of length varies
depending on {base type definition}.

Example

The following is the definition of a ·user-defined· datatype which requires strings to have at least one character (i.e., the
empty string is not in the ·value space· of this datatype).

<simpleType name='non-empty-string'>
 <restriction base='string'>
 <minLength value='1'/>
 </restriction>
</simpleType>

4.3.2.1 The minLength Schema Component

Schema Component: minLength, a kind of Constraining Facet

{annotations}

A sequence of Annotation components.
{value}

An xs:nonNegativeInteger value. Required.
{fixed}

An xs:boolean value. Required.

If {fixed} is true, then types for which the current type is the {base type definition} cannot specify a value for minLength other
than {value}.

4.3.2.2 XML Representation of minLength Schema Component

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

78 of 171 03/07/2021, 05:45

Property

{value}

{fixed}

{annotations}

The XML representation for a minLength schema component is a <minLength> element information item. The
correspondences between the properties of the information item and properties of the component are as follows:

XML Representation Summary: minLength Element Information Item

<minLength
 fixed = boolean : false
 id = ID
value = nonNegativeInteger
{any attributes with non-schema namespace . . .}>

 Content: (annotation?)
</minLength>

minLength Schema Component

Representation

The actual value of the value [attribute]

The actual value of the fixed [attribute], if present, otherwise false

The annotation mapping of the <minLength> element, as defined in section XML Representation of
Annotation Schema Components of [XSD 1.1 Part 1: Structures].

4.3.2.3 minLength Validation Rules

Validation Rule: minLength Valid

A value in a ·value space· is facet-valid with respect to ·minLength·, determined as follows:

1 if the {variety} is ·atomic· then
1.1 if {primitive type definition} is string or anyURI, then the length of the value, as measured in characters ���� be greater

than or equal to {value};
1.2 if {primitive type definition} is hexBinary or base64Binary, then the length of the value, as measured in octets of the

binary data, ���� be greater than or equal to {value};
1.3 if {primitive type definition} is QName or NOTATION, then any {value} is facet-valid.

2 if the {variety} is ·list·, then the length of the value, as measured in list items, ���� be greater than or equal to {value}

The use of ·minLength· on QName, NOTATION, and datatypes ·derived· from them is deprecated. Future versions of this
specification may remove this facet for these datatypes.

4.3.2.4 Constraints on minLength Schema Components

Schema Component Constraint: minLength <= maxLength

If both minLength and maxLength are members of {facets}, then the {value} of minLength ���� be less than or equal to the
{value} of maxLength.

Schema Component Constraint: minLength valid restriction

It is an ·error· if minLength is among the members of {facets} of {base type definition} and {value} is less than the {value} of
the parent minLength.

4.3.3 maxLength

[Definition:] maxLength is the maximum number of units of length, where units of length varies depending on the type that is
being ·derived· from. The value of maxLength ���� be a nonNegativeInteger.

For string and datatypes ·derived· from string, maxLength is measured in units of characters as defined in [XML]. For
hexBinary and base64Binary and datatypes ·derived· from them, maxLength is measured in octets (8 bits) of binary data. For
datatypes ·constructed· by ·list·, maxLength is measured in number of list items.

Note: For string and datatypes ·derived· from string, maxLength will not always coincide with "string length" as perceived
by some users or with the number of storage units in some digital representation. Therefore, care should be taken when
specifying a value for maxLength and in attempting to infer storage requirements from a given value for maxLength.

·maxLength· provides for:

Constraining a ·value space· to values with at most a specific number of units of length, where units of length varies
depending on {base type definition}.

Example

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

79 of 171 03/07/2021, 05:45

Property

{value}

{fixed}

{annotations}

The following is the definition of a ·user-defined· datatype which might be used to accept form input with an upper limit to the
number of characters that are acceptable.

<simpleType name='form-input'>
 <restriction base='string'>
 <maxLength value='50'/>
 </restriction>
</simpleType>

4.3.3.1 The maxLength Schema Component

Schema Component: maxLength, a kind of Constraining Facet

{annotations}

A sequence of Annotation components.
{value}

An xs:nonNegativeInteger value. Required.
{fixed}

An xs:boolean value. Required.

If {fixed} is true, then types for which the current type is the {base type definition} cannot specify a value for maxLength other
than {value}.

4.3.3.2 XML Representation of maxLength Schema Components

The XML representation for a maxLength schema component is a <maxLength> element information item. The
correspondences between the properties of the information item and properties of the component are as follows:

XML Representation Summary: maxLength Element Information Item

<maxLength
 fixed = boolean : false
 id = ID
value = nonNegativeInteger
{any attributes with non-schema namespace . . .}>

 Content: (annotation?)
</maxLength>

maxLength Schema Component

Representation

The actual value of the value [attribute]

The actual value of the fixed [attribute], if present, otherwise false

The annotation mapping of the <maxLength> element, as defined in section XML Representation of
Annotation Schema Components of [XSD 1.1 Part 1: Structures].

4.3.3.3 maxLength Validation Rules

Validation Rule: maxLength Valid

A value in a ·value space· is facet-valid with respect to ·maxLength·, determined as follows:

1 if the {variety} is ·atomic· then
1.1 if {primitive type definition} is string or anyURI, then the length of the value, as measured in characters ���� be less

than or equal to {value};
1.2 if {primitive type definition} is hexBinary or base64Binary, then the length of the value, as measured in octets of the

binary data, ���� be less than or equal to {value};
1.3 if {primitive type definition} is QName or NOTATION, then any {value} is facet-valid.

2 if the {variety} is ·list·, then the length of the value, as measured in list items, ���� be less than or equal to {value}

The use of ·maxLength· on QName, NOTATION, and datatypes ·derived· from them is deprecated. Future versions of this
specification may remove this facet for these datatypes.

4.3.3.4 Constraints on maxLength Schema Components

Schema Component Constraint: maxLength valid restriction

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

80 of 171 03/07/2021, 05:45

Property

{value}

{annotations}

It is an ·error· if maxLength is among the members of {facets} of {base type definition} and {value} is greater than the {value}
of the parent maxLength.

4.3.4 pattern

[Definition:] pattern is a constraint on the ·value space· of a datatype which is achieved by constraining the ·lexical space· to
·literals· which match each member of a set of ·regular expressions·. The value of pattern ���� be a set of ·regular
expressions·.

Note: An XML <restriction> containing more than one <pattern> element gives rise to a single ·regular expression· in the
set; this ·regular expression· is an "or" of the ·regular expressions· that are the content of the <pattern> elements.

·pattern· provides for:

Constraining a ·value space· to values that are denoted by ·literals· which match each of a set of ·regular expressions·.

Example

The following is the definition of a ·user-defined· datatype which is a better representation of postal codes in the United
States, by limiting strings to those which are matched by a specific ·regular expression·.

<simpleType name='better-us-zipcode'>
 <restriction base='string'>
 <pattern value='[0-9]{5}(-[0-9]{4})?'/>
 </restriction>
</simpleType>

4.3.4.1 The pattern Schema Component

Schema Component: pattern, a kind of Constraining Facet

{annotations}

A sequence of Annotation components.
{value}

A non-empty set of ·regular expressions·.

4.3.4.2 XML Representation of pattern Schema Components

The XML representation for a pattern schema component is one or more <pattern> element information items. The
correspondences between the properties of the information item and properties of the component are as follows:

XML Representation Summary: pattern Element Information Item

<pattern
 id = ID
value = string
{any attributes with non-schema namespace . . .}>

 Content: (annotation?)
</pattern>

pattern Schema Component

Representation

[Definition:] Let R be a regular expression given by the appropriate case among the following:
1 If there is only one <pattern> among the [children] of a <restriction>, then the actual value of its value

[attribute]
2 otherwise the concatenation of the actual values of all the <pattern> [children]'s value [attributes], in

order, separated by '|', so forming a single regular expression with multiple ·branches·.
The value is then given by the appropriate case among the following:
1 If the {base type definition} of the ·owner· has a pattern facet among its {facets}, then the union of that

pattern facet's {value} and {·R·}
2 otherwise just {·R·}

The annotation mapping of the set containing all of the <pattern> elements among the [children] of the
<restriction> element information item, as defined in section XML Representation of Annotation Schema
Components of [XSD 1.1 Part 1: Structures].

Note: The {value} property will only have more than one member when ·facet-based restriction· involves a pattern facet at
more than one step in a type derivation. During validation, lexical forms will be checked against every member of the

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

81 of 171 03/07/2021, 05:45

resulting {value}, effectively creating a conjunction of patterns.

In summary, ·pattern· facets specified on the same step in a type derivation are ORed together, while ·pattern· facets
specified on different steps of a type derivation are ANDed together.

Thus, to impose two ·pattern· constraints simultaneously, schema authors may either write a single ·pattern· which
expresses the intersection of the two ·pattern·s they wish to impose, or define each ·pattern· on a separate type derivation
step.

4.3.4.3 Constraints on XML Representation of pattern

Schema Representation Constraint: Pattern value

The actual value of the value [attribute] must be a ·regular expression· as defined in Regular Expressions (§G).

4.3.4.4 pattern Validation Rules

Validation Rule: pattern valid

A ·literal· in a ·lexical space· is pattern-valid (or: facet-valid with respect to ·pattern·) if and only if for each ·regular
expression· in its {value}, the ·literal· is among the set of character sequences denoted by the ·regular expression·.

Note: As noted in Datatype (§2.1), certain uses of the ·pattern· facet may eliminate from the lexical space the canonical
forms of some values in the value space; this can be inconvenient for applications which write out the canonical form of a
value and rely on being able to read it in again as a legal lexical form. This specification provides no recourse in such
situations; applications are free to deal with it as they see fit. Caution is advised.

4.3.4.5 Constraints on pattern Schema Components

Schema Component Constraint: Valid restriction of pattern

It is an ·error· if there is any member of the {value} of the pattern facet on the {base type definition} which is not also a
member of the {value}.

Note: For components constructed from XML representations in schema documents, the satisfaction of this constraint is
a consequence of the XML mapping rules: any pattern imposed by a simple type definition S will always also be
imposed by any type derived from S by ·facet-based restriction·. This constraint ensures that components constructed
by other means (so-called "born-binary" components) similarly preserve pattern facets across ·facet-based restriction·.

4.3.5 enumeration

[Definition:] enumeration constrains the ·value space· to a specified set of values.

enumeration does not impose an order relation on the ·value space· it creates; the value of the ·ordered· property of the
·derived· datatype remains that of the datatype from which it is ·derived·.

·enumeration· provides for:

Constraining a ·value space· to a specified set of values.

Example

The following example is a Simple Type Definition for a ·user-defined· datatype which limits the values of dates to the three
US holidays enumerated. This Simple Type Definition would appear in a schema authored by an "end-user" and shows how
to define a datatype by enumerating the values in its ·value space·. The enumerated values must be type-valid ·literals· for
the ·base type·.

<simpleType name='holidays'>
 <annotation>
 <documentation>some US holidays</documentation>
 </annotation>
 <restriction base='gMonthDay'>
 <enumeration value='--01-01'>
 <annotation>
 <documentation>New Year's day</documentation>
 </annotation>
 </enumeration>
 <enumeration value='--07-04'>
 <annotation>
 <documentation>4th of July</documentation>
 </annotation>

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

82 of 171 03/07/2021, 05:45

Property

{value}

{annotations}

 </enumeration>
 <enumeration value='--12-25'>
 <annotation>
 <documentation>Christmas</documentation>
 </annotation>
 </enumeration>
 </restriction>
</simpleType>

4.3.5.1 The enumeration Schema Component

Schema Component: enumeration, a kind of Constraining Facet

{annotations}

A sequence of Annotation components.
{value}

A set of values from the ·value space· of the {base type definition}.

4.3.5.2 XML Representation of enumeration Schema Components

The XML representation for an enumeration schema component is one or more <enumeration> element information items. The
correspondences between the properties of the information item and properties of the component are as follows:

XML Representation Summary: enumeration Element Information Item

<enumeration
 id = ID
value = anySimpleType
{any attributes with non-schema namespace . . .}>

 Content: (annotation?)
</enumeration>

enumeration Schema Component

Representation

The appropriate case among the following:
1 If there is only one <enumeration> among the [children] of a <restriction>, then a set with one member,

the actual value of its value [attribute], interpreted as an instance of the {base type definition}.
2 otherwise a set of the actual values of all the <enumeration> [children]'s value [attributes], interpreted

as instances of the {base type definition}.

Note: The value [attribute] is declared as having type ·anySimpleType·, but the {value} property of the
enumeration facet ���� be a member of the {base type definition}. So in mapping from the XML
representation to the enumeration component, the actual value is identified by using the ·lexical
mapping· of the {base type definition}.

A (possibly empty) sequence of Annotation components, one for each <annotation> among the [children]
of the <enumeration>s among the [children] of a <restriction>, in order.

4.3.5.3 Constraints on XML Representation of enumeration

Schema Representation Constraint: Enumeration value

The normalized value of the value [attribute] must be Datatype Valid (§4.1.4) with respect to the {base type definition} of the
Simple Type Definition corresponding to the nearest <simpleType> ancestor element.

4.3.5.4 enumeration Validation Rules

Validation Rule: enumeration valid

A value in a ·value space· is facet-valid with respect to ·enumeration· if and only if the value is equal or identical to one of the
values specified in {value}.

Note: As specified normatively elsewhere, for purposes of checking enumerations, no distinction is made between an
atomic value V and a list of length one containing V as its only item.

In this question, the behavior of this specification is thus the same as the behavior specified by [XQuery 1.0 and XPath 2.0
Functions and Operators] and related specifications.

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

83 of 171 03/07/2021, 05:45

4.3.5.5 Constraints on enumeration Schema Components

Schema Component Constraint: enumeration valid restriction

It is an ·error· if any member of {value} is not in the ·value space· of {base type definition}.

4.3.6 whiteSpace

[Definition:] whiteSpace constrains the ·value space· of types ·derived· from string such that the various behaviors specified
in Attribute Value Normalization in [XML] are realized. The value of whiteSpace must be one of {preserve, replace, collapse}.

preserve

No normalization is done, the value is not changed (this is the behavior required by [XML] for element content)

replace

All occurrences of #x9 (tab), #xA (line feed) and #xD (carriage return) are replaced with #x20 (space)

collapse

After the processing implied by replace, contiguous sequences of #x20's are collapsed to a single #x20, and any #x20 at
the start or end of the string is then removed.

Note: The notation #xA used here (and elsewhere in this specification) represents the Universal Character Set (UCS)
code point hexadecimal A (line feed), which is denoted by U+000A. This notation is to be distinguished from
, which
is the XML character reference to that same UCS code point.

whiteSpace is applicable to all ·atomic· and ·list· datatypes. For all ·atomic· datatypes other than string (and types ·derived·
by ·facet-based restriction· from it) the value of whiteSpace is collapse and cannot be changed by a schema author; for string
the value of whiteSpace is preserve; for any type ·derived· by ·facet-based restriction· from string the value of whiteSpace
can be any of the three legal values (as long as the value is at least as restrictive as the value of the ·base type·; see
Constraints on whiteSpace Schema Components (§4.3.6.4)). For all datatypes ·constructed· by ·list· the value of whiteSpace
is collapse and cannot be changed by a schema author. For all datatypes ·constructed· by ·union· whiteSpace does not
apply directly; however, the normalization behavior of ·union· types is controlled by the value of whiteSpace on that one of the
·basic members· against which the ·union· is successfully validated.

Note: For more information on whiteSpace, see the discussion on white space normalization in Schema Component
Details in [XSD 1.1 Part 1: Structures].

·whiteSpace· provides for:

Constraining a ·value space· according to the white space normalization rules.

Example

The following example is the Simple Type Definition for the ·built-in· token datatype.

<simpleType name='token'>
 <restriction base='normalizedString'>
 <whiteSpace value='collapse'/>
 </restriction>
</simpleType>

Note: The values "replace" and "collapse" may appear to provide a convenient way to "unwrap" text (i.e. undo the effects
of pretty-printing and word-wrapping). In some cases, especially highly constrained data consisting of lists of artificial
tokens such as part numbers or other identifiers, this appearance is correct. For natural-language data, however, the
whitespace processing prescribed for these values is not only unreliable but will systematically remove the information
needed to perform unwrapping correctly. For Asian scripts, for example, a correct unwrapping process will replace line
boundaries not with blanks but with zero-width separators or nothing. In consequence, it is normally unwise to use these
values for natural-language data, or for any data other than lists of highly constrained tokens.

4.3.6.1 The whiteSpace Schema Component

Schema Component: whiteSpace, a kind of Constraining Facet

{annotations}

A sequence of Annotation components.
{value}

One of {preserve, replace, collapse}. Required.

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

84 of 171 03/07/2021, 05:45

Property

{value}

{fixed}

{annotations}

{fixed}

An xs:boolean value. Required.

If {fixed} is true, then types for which the current type is the {base type definition} cannot specify a value for whiteSpace other
than {value}.

4.3.6.2 XML Representation of whiteSpace Schema Components

The XML representation for a whiteSpace schema component is a <whiteSpace> element information item. The
correspondences between the properties of the information item and properties of the component are as follows:

XML Representation Summary: whiteSpace Element Information Item

<whiteSpace
 fixed = boolean : false
 id = ID
value = (collapse | preserve | replace)
{any attributes with non-schema namespace . . .}>

 Content: (annotation?)
</whiteSpace>

whiteSpace Schema Component

Representation

The actual value of the value [attribute]

The actual value of the fixed [attribute], if present, otherwise false

The annotation mapping of the <whiteSpace> element, as defined in section XML Representation of
Annotation Schema Components of [XSD 1.1 Part 1: Structures].

4.3.6.3 whiteSpace Validation Rules

Note: There are no ·Validation Rule·s associated with ·whiteSpace·. For more information, see the discussion on white
space normalization in Schema Component Details in [XSD 1.1 Part 1: Structures], in particular the section 3.1.4 White
Space Normalization during Validation.

4.3.6.4 Constraints on whiteSpace Schema Components

Schema Component Constraint: whiteSpace valid restriction

It is an ·error· if whiteSpace is among the members of {facets} of {base type definition} and any of the following conditions is
true:

1 {value} is replace or preserve and the {value} of the parent whiteSpace is collapse
2 {value} is preserve and the {value} of the parent whiteSpace is replace

Note: In order of increasing restrictiveness, the legal values for the whiteSpace facet are preserve, collapse, and
replace. The more restrictive keywords are more restrictive not in the sense of accepting progressively fewer instance
documents but in the sense that each corresponds to a progressively smaller, more tightly restricted value space.

4.3.7 maxInclusive

[Definition:] maxInclusive is the inclusive upper bound of the ·value space· for a datatype with the ·ordered· property. The
value of maxInclusive ���� be equal to some value in the ·value space· of the ·base type·.

·maxInclusive· provides for:

Constraining a ·value space· to values with a specific inclusive upper bound.

Example

The following is the definition of a ·user-defined· datatype which limits values to integers less than or equal to 100, using
·maxInclusive·.

<simpleType name='one-hundred-or-less'>
 <restriction base='integer'>
 <maxInclusive value='100'/>
 </restriction>
</simpleType>

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

85 of 171 03/07/2021, 05:45

Property

{value}

{fixed}

{annotations}

4.3.7.1 The maxInclusive Schema Component

Schema Component: maxInclusive, a kind of Constraining Facet

{annotations}

A sequence of Annotation components.
{value}

Required.
A value from the ·value space· of the {base type definition}.

{fixed}

An xs:boolean value. Required.

If {fixed} is true, then types for which the current type is the {base type definition} cannot specify a value for maxInclusive other
than {value}.

4.3.7.2 XML Representation of maxInclusive Schema Components

The XML representation for a maxInclusive schema component is a <maxInclusive> element information item. The
correspondences between the properties of the information item and properties of the component are as follows:

XML Representation Summary: maxInclusive Element Information Item

<maxInclusive
 fixed = boolean : false
 id = ID
value = anySimpleType
{any attributes with non-schema namespace . . .}>

 Content: (annotation?)
</maxInclusive>

{value} ���� be equal to some value in the ·value space· of {base type definition}.

maxInclusive Schema Component

Representation

The actual value of the value [attribute]

The actual value of the fixed [attribute], if present, otherwise false

The annotation mapping of the <maxInclusive> element, as defined in section XML Representation of
Annotation Schema Components of [XSD 1.1 Part 1: Structures].

4.3.7.3 maxInclusive Validation Rules

Validation Rule: maxInclusive Valid

A value in an ·ordered· ·value space· is facet-valid with respect to ·maxInclusive· if and only if the value is less than or equal
to {value}, according to the datatype's order relation.

4.3.7.4 Constraints on maxInclusive Schema Components

Schema Component Constraint: minInclusive <= maxInclusive

It is an ·error· for the value specified for ·minInclusive· to be greater than the value specified for ·maxInclusive· for the same
datatype.

Schema Component Constraint: maxInclusive valid restriction

It is an ·error· if any of the following conditions is true:

1 maxInclusive is among the members of {facets} of {base type definition} and {value} is greater than the {value} of that
maxInclusive.

2 maxExclusive is among the members of {facets} of {base type definition} and {value} is greater than or equal to the {value}
of that maxExclusive.

3 minInclusive is among the members of {facets} of {base type definition} and {value} is less than the {value} of that
minInclusive.

4 minExclusive is among the members of {facets} of {base type definition} and {value} is less than or equal to the {value} of
that minExclusive.

4.3.8 maxExclusive

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

86 of 171 03/07/2021, 05:45

Property

{value}

{fixed}

{annotations}

[Definition:] maxExclusive is the exclusive upper bound of the ·value space· for a datatype with the ·ordered· property. The
value of maxExclusive ���� be equal to some value in the ·value space· of the ·base type· or be equal to {value} in {base
type definition}.

·maxExclusive· provides for:

Constraining a ·value space· to values with a specific exclusive upper bound.

Example

The following is the definition of a ·user-defined· datatype which limits values to integers less than or equal to 100, using
·maxExclusive·.

<simpleType name='less-than-one-hundred-and-one'>
 <restriction base='integer'>
 <maxExclusive value='101'/>
 </restriction>
</simpleType>

Note that the ·value space· of this datatype is identical to the previous one (named 'one-hundred-or-less').

4.3.8.1 The maxExclusive Schema Component

Schema Component: maxExclusive, a kind of Constraining Facet

{annotations}

A sequence of Annotation components.
{value}

Required.
A value from the ·value space· of the {base type definition}.

{fixed}

An xs:boolean value. Required.

If {fixed} is true, then types for which the current type is the {base type definition} cannot specify a value for maxExclusive other
than {value}.

4.3.8.2 XML Representation of maxExclusive Schema Components

The XML representation for a maxExclusive schema component is a <maxExclusive> element information item. The
correspondences between the properties of the information item and properties of the component are as follows:

XML Representation Summary: maxExclusive Element Information Item

<maxExclusive
 fixed = boolean : false
 id = ID
value = anySimpleType
{any attributes with non-schema namespace . . .}>

 Content: (annotation?)
</maxExclusive>

{value} ���� be equal to some value in the ·value space· of {base type definition}.

maxExclusive Schema Component

Representation

The actual value of the value [attribute]

The actual value of the fixed [attribute], if present, otherwise false

The annotation mapping of the <maxExclusive> element, as defined in section XML Representation of
Annotation Schema Components of [XSD 1.1 Part 1: Structures].

4.3.8.3 maxExclusive Validation Rules

Validation Rule: maxExclusive Valid

A value in an ·ordered· ·value space· is facet-valid with respect to ·maxExclusive· if and only if the value is less than {value},
according to the datatype's order relation.

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

87 of 171 03/07/2021, 05:45

4.3.8.4 Constraints on maxExclusive Schema Components

Schema Component Constraint: maxInclusive and maxExclusive

It is an ·error· for both ·maxInclusive· and ·maxExclusive· to be specified in the same derivation step of a Simple Type
Definition.

Schema Component Constraint: minExclusive <= maxExclusive

It is an ·error· for the value specified for ·minExclusive· to be greater than the value specified for ·maxExclusive· for the
same datatype.

Schema Component Constraint: maxExclusive valid restriction

It is an ·error· if any of the following conditions is true:

1 maxExclusive is among the members of {facets} of {base type definition} and {value} is greater than the {value} of that
maxExclusive.

2 maxInclusive is among the members of {facets} of {base type definition} and {value} is greater than the {value} of that
maxInclusive.

3 minInclusive is among the members of {facets} of {base type definition} and {value} is less than or equal to the {value} of
that minInclusive.

4 minExclusive is among the members of {facets} of {base type definition} and {value} is less than or equal to the {value} of
that minExclusive.

4.3.9 minExclusive

[Definition:] minExclusive is the exclusive lower bound of the ·value space· for a datatype with the ·ordered· property. The
value of minExclusive ���� be equal to some value in the ·value space· of the ·base type· or be equal to {value} in {base type
definition}.

·minExclusive· provides for:

Constraining a ·value space· to values with a specific exclusive lower bound.

Example

The following is the definition of a ·user-defined· datatype which limits values to integers greater than or equal to 100, using
·minExclusive·.

<simpleType name='more-than-ninety-nine'>
 <restriction base='integer'>
 <minExclusive value='99'/>
 </restriction>
</simpleType>

Note that the ·value space· of this datatype is identical to the following one (named 'one-hundred-or-more').

4.3.9.1 The minExclusive Schema Component

Schema Component: minExclusive, a kind of Constraining Facet

{annotations}

A sequence of Annotation components.
{value}

Required.
A value from the ·value space· of the {base type definition}.

{fixed}

An xs:boolean value. Required.

If {fixed} is true, then types for which the current type is the {base type definition} cannot specify a value for minExclusive other
than {value}.

4.3.9.2 XML Representation of minExclusive Schema Components

The XML representation for a minExclusive schema component is a <minExclusive> element information item. The
correspondences between the properties of the information item and properties of the component are as follows:

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

88 of 171 03/07/2021, 05:45

Property

{value}

{fixed}

{annotations}

XML Representation Summary: minExclusive Element Information Item

<minExclusive
 fixed = boolean : false
 id = ID
value = anySimpleType
{any attributes with non-schema namespace . . .}>

 Content: (annotation?)
</minExclusive>

{value} ���� be equal to some value in the ·value space· of {base type definition}.

minExclusive Schema Component

Representation

The actual value of the value [attribute]

The actual value of the fixed [attribute], if present, otherwise false

The annotation mapping of the <minExclusive> element, as defined in section XML Representation of
Annotation Schema Components of [XSD 1.1 Part 1: Structures].

4.3.9.3 minExclusive Validation Rules

Validation Rule: minExclusive Valid

A value in an ·ordered· ·value space· is facet-valid with respect to ·minExclusive· if and only if the value is greater than
{value}, according to the datatype's order relation.

4.3.9.4 Constraints on minExclusive Schema Components

Schema Component Constraint: minInclusive and minExclusive

It is an ·error· for both ·minInclusive· and ·minExclusive· to be specified in the same derivation step of a Simple Type
Definition.

Schema Component Constraint: minExclusive < maxInclusive

It is an ·error· for the value specified for ·minExclusive· to be greater than or equal to the value specified for ·maxInclusive·
for the same datatype.

Schema Component Constraint: minExclusive valid restriction

It is an ·error· if any of the following conditions is true:

1 minExclusive is among the members of {facets} of {base type definition} and {value} is less than the {value} of that
minExclusive.

2 minInclusive is among the members of {facets} of {base type definition} and {value} is less than the {value} of that
minInclusive.

3 maxInclusive is among the members of {facets} of {base type definition} and {value} is greater than or equal to the {value}
of that maxInclusive.

4 maxExclusive is among the members of {facets} of {base type definition} and {value} is greater than or equal to the {value}
of that maxExclusive.

4.3.10 minInclusive

[Definition:] minInclusive is the inclusive lower bound of the ·value space· for a datatype with the ·ordered· property. The
value of minInclusive ���� be equal to some value in the ·value space· of the ·base type·.

·minInclusive· provides for:

Constraining a ·value space· to values with a specific inclusive lower bound.

Example

The following is the definition of a ·user-defined· datatype which limits values to integers greater than or equal to 100, using
·minInclusive·.

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

89 of 171 03/07/2021, 05:45

Property

{value}

{fixed}

{annotations}

<simpleType name='one-hundred-or-more'>
 <restriction base='integer'>
 <minInclusive value='100'/>
 </restriction>
</simpleType>

4.3.10.1 The minInclusive Schema Component

Schema Component: minInclusive, a kind of Constraining Facet

{annotations}

A sequence of Annotation components.
{value}

Required.
A value from the ·value space· of the {base type definition}.

{fixed}

An xs:boolean value. Required.

If {fixed} is true, then types for which the current type is the {base type definition} cannot specify a value for minInclusive other
than {value}.

4.3.10.2 XML Representation of minInclusive Schema Components

The XML representation for a minInclusive schema component is a <minInclusive> element information item. The
correspondences between the properties of the information item and properties of the component are as follows:

XML Representation Summary: minInclusive Element Information Item

<minInclusive
 fixed = boolean : false
 id = ID
value = anySimpleType
{any attributes with non-schema namespace . . .}>

 Content: (annotation?)
</minInclusive>

{value} ���� be equal to some value in the ·value space· of {base type definition}.

minInclusive Schema Component

Representation

The actual value of the value [attribute]

The actual value of the fixed [attribute], if present, otherwise false

The annotation mapping of the <minInclusive> element, as defined in section XML Representation of
Annotation Schema Components of [XSD 1.1 Part 1: Structures].

4.3.10.3 minInclusive Validation Rules

Validation Rule: minInclusive Valid

A value in an ·ordered· ·value space· is facet-valid with respect to ·minInclusive· if and only if the value is greater than or
equal to {value}, according to the datatype's order relation.

4.3.10.4 Constraints on minInclusive Schema Components

Schema Component Constraint: minInclusive < maxExclusive

It is an ·error· for the value specified for ·minInclusive· to be greater than or equal to the value specified for ·maxExclusive·
for the same datatype.

Schema Component Constraint: minInclusive valid restriction

It is an ·error· if any of the following conditions is true:

1 minInclusive is among the members of {facets} of {base type definition} and {value} is less than the {value} of that
minInclusive.

2 maxInclusive is among the members of {facets} of {base type definition} and {value} is greater the {value} of that
maxInclusive.

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

90 of 171 03/07/2021, 05:45

Property

{value}

{fixed}

{annotations}

3 minExclusive is among the members of {facets} of {base type definition} and {value} is less than or equal to the {value} of
that minExclusive.

4 maxExclusive is among the members of {facets} of {base type definition} and {value} is greater than or equal to the {value}
of that maxExclusive.

4.3.11 totalDigits

[Definition:] totalDigits restricts the magnitude and arithmetic precision of values in the ·value spaces· of decimal and
datatypes derived from it.

For decimal, if the {value} of totalDigits is t, the effect is to require that values be equal to i / 10n, for some integers i and n, with
| i | < 10t and 0 ≤ n ≤ t. This has as a consequence that the values are expressible using at most t digits in decimal notation.

The {value} of totalDigits ���� be a positiveInteger.

The term 'totalDigits' is chosen to reflect the fact that it restricts the ·value space· to those values that can be represented
lexically using at most totalDigits digits in decimal notation, or at most totalDigits digits for the coefficient, in scientific notation.
Note that it does not restrict the ·lexical space· directly; a lexical representation that adds non-significant leading or trailing zero
digits is still permitted. It also has no effect on the values NaN, INF, and -INF.

4.3.11.1 The totalDigits Schema Component

Schema Component: totalDigits, a kind of Constraining Facet

{annotations}

A sequence of Annotation components.
{value}

An xs:positiveInteger value. Required.
{fixed}

An xs:boolean value. Required.

If {fixed} is true, then types for which the current type is the {base type definition} ���� not specify a value for totalDigits other
than {value}.

4.3.11.2 XML Representation of totalDigits Schema Components

The XML representation for a totalDigits schema component is a <totalDigits> element information item. The correspondences
between the properties of the information item and properties of the component are as follows:

XML Representation Summary: totalDigits Element Information Item

<totalDigits
 fixed = boolean : false
 id = ID
value = positiveInteger
{any attributes with non-schema namespace . . .}>

 Content: (annotation?)
</totalDigits>

totalDigits Schema Component

Representation

The actual value of the value [attribute]

The actual value of the fixed [attribute], if present, otherwise false

The annotation mapping of the <totalDigits> element, as defined in section XML Representation of
Annotation Schema Components of [XSD 1.1 Part 1: Structures].

4.3.11.3 totalDigits Validation Rules

Validation Rule: totalDigits Valid

A value v is facet-valid with respect to a totalDigits facet with a {value} of t if and only if v is a decimal value equal to i / 10n,
for some integers i and n, with | i | < 10t and 0 ≤ n ≤ t.

4.3.11.4 Constraints on totalDigits Schema Components

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

91 of 171 03/07/2021, 05:45

Property

{value}

{fixed}

{annotations}

Schema Component Constraint: totalDigits valid restriction

It is an ·error· if the ·owner·'s {base type definition} has a totalDigits facet among its {facets} and {value} is greater than the
{value} of that totalDigits facet.

4.3.12 fractionDigits

[Definition:] fractionDigits places an upper limit on the arithmetic precision of decimal values: if the {value} of fractionDigits
= f, then the value space is restricted to values equal to i / 10n for some integers i and n and 0 ≤ n ≤ f. The value of
fractionDigits ���� be a nonNegativeInteger

The term fractionDigits is chosen to reflect the fact that it restricts the ·value space· to those values that can be represented
lexically in decimal notation using at most fractionDigits to the right of the decimal point. Note that it does not restrict the ·lexical
space· directly; a lexical representation that adds non-significant leading or trailing zero digits is still permitted.

Example

The following is the definition of a ·user-defined· datatype which could be used to represent the magnitude of a person's
body temperature on the Celsius scale. This definition would appear in a schema authored by an "end-user" and shows how
to define a datatype by specifying facet values which constrain the range of the ·base type·.

<simpleType name='celsiusBodyTemp'>
 <restriction base='decimal'>
 <fractionDigits value='1'/>
 <minInclusive value='32'/>

 <maxInclusive value='41.7'/>
 </restriction>
</simpleType>

4.3.12.1 The fractionDigits Schema Component

Schema Component: fractionDigits, a kind of Constraining Facet

{annotations}

A sequence of Annotation components.
{value}

An xs:nonNegativeInteger value. Required.
{fixed}

An xs:boolean value. Required.

If {fixed} is true, then types for which the current type is the {base type definition} ���� not specify a value for fractionDigits
other than {value}.

4.3.12.2 XML Representation of fractionDigits Schema Components

The XML representation for a fractionDigits schema component is a <fractionDigits> element information item. The
correspondences between the properties of the information item and properties of the component are as follows:

XML Representation Summary: fractionDigits Element Information Item

<fractionDigits
 fixed = boolean : false
 id = ID
value = nonNegativeInteger
{any attributes with non-schema namespace . . .}>

 Content: (annotation?)
</fractionDigits>

fractionDigits Schema Component

Representation

The actual value of the value [attribute]

The actual value of the fixed [attribute], if present, otherwise false

The annotation mapping of the <fractionDigits> element, as defined in section XML Representation of
Annotation Schema Components of [XSD 1.1 Part 1: Structures].

4.3.12.3 fractionDigits Validation Rules

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

92 of 171 03/07/2021, 05:45

Validation Rule: fractionDigits Valid

A value is facet-valid with respect to ·fractionDigits· if and only if that value is equal to i / 10n for integer i and n, with 0 ≤ n ≤
{value}.

4.3.12.4 Constraints on fractionDigits Schema Components

Schema Component Constraint: fractionDigits less than or equal to totalDigits

It is an ·error· for the {value} of fractionDigits to be greater than that of totalDigits.

Schema Component Constraint: fractionDigits valid restriction

It is an ·error· if ·fractionDigits· is among the members of {facets} of {base type definition} and {value} is greater than the
{value} of that ·fractionDigits·.

4.3.13 Assertions

[Definition:] Assertions constrain the ·value space· by requiring the values to satisfy specified XPath ([XPath 2.0])
expressions. The value of the assertions facet is a sequence of Assertion components as defined in [XSD 1.1 Part 1:
Structures].

Example

The following is the definition of a ·user-defined· datatype which allows all integers but 0 by using an assertion to disallow the
value 0.

<simpleType name='nonZeroInteger'>
 <restriction base='integer'>
 <assertion test='$value ne 0'/>
 </restriction>
</simpleType>

Example

The following example defines the datatype "triple", whose ·value space· is the set of integers evenly divisible by three.

<simpleType name='triple'>
 <restriction base='integer'>
 <assertion test='$value mod 3 eq 0'/>
 </restriction>
</simpleType>

The same datatype can be defined without the use of assertions, but the pattern necessary to represent the set of triples is
long and error-prone:

<simpleType name='triple'>
 <restriction base='integer'>
 <pattern value=
 "([0369]|[147][0369]*[258]|(([258]|[147][0369]*[147])([0369]|[258][0369]*[147])*([147]|[258][0369]*[258]))*"/>
 </restriction>
</simpleType>

The assertion used in the first version of "triple" is likely to be clearer for many readers of the schema document.

4.3.13.1 The assertions Schema Component

Schema Component: assertions, a kind of Constraining Facet

{annotations}

A sequence of Annotation components.
{value}

A sequence of Assertion components.

4.3.13.2 XML Representation of assertions Schema Components

The XML representation for an assertions schema component is one or more <assertion> element information items. The

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

93 of 171 03/07/2021, 05:45

Property

{value}

{annotations}

correspondences between the properties of the information item and properties of the component are as follows:

XML Representation Summary: assertion Element Information Item

<assertion
 id = ID
test = an XPath expression

 xpathDefaultNamespace = (anyURI | (##defaultNamespace | ##targetNamespace | ##local))
{any attributes with non-schema namespace . . .}>

 Content: (annotation?)
</assertion>

assertions Schema Component

Representation

A sequence whose members are Assertions drawn from the following sources, in order:
1 If the {base type definition} of the ·owner· has an assertions facet among its {facets}, then the

Assertions which appear in the {value} of that assertions facet.
2 Assertions corresponding to the <assertion> element information items among the [children] of

<restriction>, if any, in document order. For details of the construction of the Assertion components, see
section 3.13.2 of [XSD 1.1 Part 1: Structures].

The empty sequence.

Note: Annotations specified within an <assertion> element are captured by the individual Assertion
component to which it maps.

4.3.13.3 Assertions Validation Rules

The following rule refers to "the nearest built-in" datatype and to the "XDM representation" of a value under a datatype.
[Definition:] For any datatype T, the nearest built-in datatype to T is the first ·built-in· datatype encountered in following the
chain of links connecting each datatype to its ·base type·. If T is a ·built-in· datatype, then the nearest built-in datatype of T is T
itself; otherwise, it is the nearest built-in datatype of T's ·base type·.

[Definition:] For any value V and any datatype T, the XDM representation of V under T is defined recursively as follows. Call
the XDM representation X. Then
1 If T = ·xs:anySimpleType· or ·xs:anyAtomicType· then X is V, and the dynamic type of X is xs:untypedAtomic.
2 If T . {variety} = atomic, then let T2 be the ·nearest built-in datatype· to T. If V is a member of the ·value space· of T2, then X

is V and the dynamic type of X is T2. Otherwise (i.e. if V is not a member of the ·value space· of T2), X is the ·XDM
representation· of V under T2 . {base type definition}.

3 If T . {variety} = list, then X is a sequence of atomic values, each atomic value being the ·XDM representation· of the
corresponding item in the list V under T . {item type definition}.

4 If T . {variety} = union, then X is the ·XDM representation· of V under the ·active basic member· of V when validated against
T. If there is no ·active basic member·, then V has no ·XDM representation· under T.

Note: If the {item type definition} of a ·list· is a ·union·, or the ·active basic member· is a ·list·, then several steps may be
necessary before the ·atomic· datatype which serves as the dynamic type of X is found.

Because the {item type definition} of a ·list· is required to be an ·atomic· or ·union· datatype, and the ·active basic
member· of a ·union· which accepts the value V is by definition not a ·union·, the recursive rule given above is guaranteed
to terminate in a sequence of one or more ·atomic· values, each belonging to an ·atomic· datatype.

Validation Rule: Assertions Valid

A value V is facet-valid with respect to an assertions facet belonging to a simple type T if and only if the {test} property of
each Assertion in its {value} evaluates to true under the conditions laid out below, without raising any dynamic error or type
error.

Evaluation of {test} is performed as defined in [XPath 2.0], with the following conditions:

1 The XPath expression {test} is evaluated, following the rules given in XPath Evaluation of [XSD 1.1 Part 1: Structures], with
the following modifications.
1.1 The in-scope variables in the static context is a set with a single member. The expanded QName of that member has no

namespace URI and has 'value' as the local name. The (static) type of the member is anyAtomicType*.

Note: The XDM type label anyAtomicType* simply says that for static typing purposes the variable $value will have a
value consisting of a sequence of zero or more atomic values.

1.2 There is no context item for the evaluation of the XPath expression.

Note: In the terminology of [XPath 2.0], the context item is "undefined".

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

94 of 171 03/07/2021, 05:45

Note: As a consequence the expression '.', or any implicit or explicit reference to the context item, will raise a
dynamic error, which will cause the assertion to be treated as false. If an error is detected statically, then the
assertion violates the schema component constraint XPath Valid and causes an error to be flagged in the schema.

The variable "$value" can be used to refer to the value being checked.

1.3 There is likewise no value for the context size and the context position in the dynamic context used for evaluation of
the assertion.

1.4 The variable values in the dynamic context is a set with a single member. The expanded QName of that member has no
namespace URI and 'value' as the local name. The value of the member is the ·XDM representation· of V under T.

1.5 If V has no ·XDM representation· under T, then the XPath expression cannot usefully be evaluated, and V is not facet-
valid against the assertions facet of T.

2 The evaluation result is converted to either true or false as if by a call to the XPath fn:boolean function.

4.3.13.4 Constraints on assertions Schema Components

Schema Component Constraint: Valid restriction of assertions

The {value} of the assertions facet on the {base type definition} ���� be a prefix of the {value}.

Note: For components constructed from XML representations in schema documents, the satisfaction of this constraint is
a consequence of the XML mapping rules: any assertion imposed by a simple type definition S will always also be
imposed by any type derived from S by ·facet-based restriction·. This constraint ensures that components constructed
by other means (so-called "born-binary" components) similarly preserve assertions facets across ·facet-based
restriction·.

4.3.14 explicitTimezone

[Definition:] explicitTimezone is a three-valued facet which can can be used to require or prohibit the time zone offset in
date/time datatypes.

Example

The following ·user-defined· datatype accepts only date values without a time zone offset, using the explicitTimezone facet.

<simpleType name='bare-date'>
 <restriction base='date'>
 <explicitTimezone value='prohibited'/>
 </restriction>
</simpleType>

The same effect could also be achieved using the pattern facet, as shown below, but it is somewhat less clear what is going
on in this derivation, and it is better practice to use the more straightforward explicitTimezone for this purpose.

<simpleType name='bare-date'>
 <restriction base='date'>
 <pattern value='[^:Z]*'/>
 </restriction>
</simpleType>

4.3.14.1 The explicitTimezone Schema Component

Schema Component: explicitTimezone, a kind of Constraining Facet

{annotations}

A sequence of Annotation components.
{value}

One of {required, prohibited, optional}. Required.
{fixed}

An xs:boolean value. Required.

If {fixed} is true, then datatypes for which the current type is the {base type definition} cannot specify a value for
explicitTimezone other than {value}.

Note: It is a consequence of timezone valid restriction (§4.3.14.4) that the value of the explicitTimezone facet cannot be
changed unless that value is optional, regardless of whether {fixed} is true or false. Accordingly, {fixed} is relevant only
when {value} is optional.

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

95 of 171 03/07/2021, 05:45

Property

{value}

{fixed}

{annotations}

4.3.14.2 XML Representation of explicitTimezone Schema Components

The XML representation for an explicitTimezone schema component is an <explicitTimezone> element information item. The
correspondences between the properties of the information item and properties of the component are as follows:

XML Representation Summary: explicitTimezone Element Information Item

<explicitTimezone
 fixed = boolean : false
 id = ID
value = NCName
{any attributes with non-schema namespace . . .}>

 Content: (annotation?)
</explicitTimezone>

explicitTimezone Schema Component

Representation

The actual value of the value [attribute]

The actual value of the fixed [attribute], if present, otherwise false

The annotation mapping of the <explicitTimezone> element, as defined in section XML Representation of
Annotation Schema Components of [XSD 1.1 Part 1: Structures].

4.3.14.3 explicitTimezone Validation Rules

Validation Rule: explicitOffset Valid

A dateTime value V is facet-valid with respect to ·explicitTimezone· if and only if one of the following is true
1 The {value} of the facet is required and V has a (non-absent) value for the ·timezoneOffset· property.
2 The {value} of the facet is prohibited and the value for the ·timezoneOffset· property in V is absent.
3 The {value} of the facet is optional.

4.3.14.4 Constraints on explicitTimezone Schema Components

Schema Component Constraint: timezone valid restriction

If the explicitTimezone facet on the {base type definition} has a {value} other than optional, then the {value} of the facet on
the ·restriction· ���� be equal to the {value} on the {base type definition}; otherwise it is an ·error·.

Note: The effect of this rule is to allow datatypes with a explicitTimezone value of optional to be restricted by specifying
a value of required or prohibited, and to forbid any other derivations using this facet.

5 Conformance

XSD 1.1: Datatypes is intended to be usable in a variety of contexts.

In the usual case, it will embedded in a host language such as [XSD 1.1 Part 1: Structures], which refers to this specification
normatively to define some part of the host language. In some cases, XSD 1.1: Datatypes may be implemented independently
of any host language.

Certain aspects of the behavior of conforming processors are described in this specification as ·implementation-defined· or
·implementation-dependent·.

[Definition:] Something which ��� vary among conforming implementations, but which ���� be specified by the
implementor for each particular implementation, is implementation-defined.

[Definition:] Something which ��� vary among conforming implementations, is not specified by this or any W3C
specification, and is not required to be specified by the implementor for any particular implementation, is
implementation-dependent.

Anything described in this specification as ·implementation-defined· or ·implementation-dependent· ��� be further constrained
by the specifications of a host language in which the datatypes and other material specified here are used. A list of
implementation-defined and implementation-dependent features can be found in Implementation-defined and implementation-
dependent features (normative) (§H)

5.1 Host Languages

When XSD 1.1: Datatypes is embedded in a host language, the definition of conformance is specified by the host language, not
by this specification. That is, when this specification is implemented in the context of an implementation of a host language, the

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

96 of 171 03/07/2021, 05:45

question of conformance to this specification (separate from the host language) does not arise.

This specification imposes certain constraints on the embedding of XSD 1.1: Datatypes by a host language; these are indicated
in the normative text by the use of the verbs '����', etc., with the phrase "host language" as the subject of the verb.

Note: For convenience, the most important of these constraints are noted here:

Host languages ������ specify that all of the datatypes described here as built-ins are automatically available.

Host languages ��� specify that additional datatypes are also made available automatically.

If user-defined datatypes are to be supported in the host language, then the host language ���� specify how user-
defined datatypes are defined and made available for use.

In addition, host languages ���� require conforming implementations of the host language to obey all of the constraints and
rules specified here.

5.2 Independent implementations

[Definition:] Implementations claiming minimal conformance to this specification independent of any host language ���� do
all of the following:
1 Support all the ·built-in· datatypes defined in this specification.
2 Completely and correctly implement all of the ·constraints on schemas· defined in this specification.
3 Completely and correctly implement all of the ·Validation Rules· defined in this specification, when checking the datatype

validity of literals against datatypes.

Implementations claiming schema-document-aware conformance to this specification, independent of any host language
���� be minimally conforming. In addition, they must do all of the following:
1 Accept simple type definitions in the form specified in Datatype components (§4).
2 Completely and correctly implement all of rules governing the XML representation of simple type definitions specified in

Datatype components (§4).
3 Map the XML representations of simple type definitions to simple type definition components as specified in the mapping

rules given in Datatype components (§4).

Note: The term schema-document aware is used here for parallelism with the corresponding term in [XSD 1.1 Part 1:
Structures]. The reference to schema documents may be taken as referring to the fact that schema-document-aware
implementations accept the XML representation of simple type definitions found in XSD schema documents. It does not
mean that the simple type definitions must themselves be free-standing XML documents, nor that they typically will be.

5.3 Conformance of data

Abstract representations of simple type definitions conform to this specification if and only if they obey all of the ·constraints on
schemas· defined in this specification.

XML representations of simple type definitions conform to this specification if they obey all of the applicable rules defined in this
specification.

Note: Because the conformance of the resulting simple type definition component depends not only on the XML
representation of a given simple type definition, but on the properties of its ·base type·, the conformance of an XML
representation of a simple type definition does not guarantee that, in the context of other schema components, it will map
to a conforming component.

5.4 Partial Implementation of Infinite Datatypes

Some ·primitive· datatypes defined in this specification have infinite ·value spaces·; no finite implementation can completely
handle all their possible values. For some such datatypes, minimum implementation limits are specified below. For other infinite
types such as string, hexBinary, and base64Binary, no minimum implementation limits are specified.

When this specification is used in the context of other languages (as it is, for example, by [XSD 1.1 Part 1: Structures]), the
host language may specify other minimum implementation limits.

When presented with a literal or value exceeding the capacity of its partial implementation of a datatype, a minimally
conforming implementation of this specification will sometimes be unable to determine with certainty whether the value is
datatype-valid or not. Sometimes it will be unable to represent the value correctly through its interface to any downstream
application.

When either of these is so, a conforming processor ���� indicate to the user and/or downstream application that it cannot
process the input data with assured correctness (much as it would indicate if it ran out of memory). When the datatype validity
of a value or literal is uncertain because it exceeds the capacity of a partial implementation, the literal or value ���� ��� be
treated as invalid, and the unsupported value ���� ��� be quietly changed to a supported value.

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

97 of 171 03/07/2021, 05:45

This specification does not constrain the method used to indicate that a literal or value in the input data has exceeded the
capacity of the implementation, or the form such indications take.

·Minimally conforming· processors which set an application- or ·implementation-defined· limit on the size of the values
supported ���� clearly document that limit.

These are the partial-implementation ·minimal conformance· requirements:

All ·minimally conforming· processors ���� support decimal values whose absolute value can be expressed as i / 10k,
where i and k are nonnegative integers such that i < 1016 and k ≤ 16 (i.e., those expressible with sixteen total digits).

All ·minimally conforming· processors ���� support nonnegative ·year· values less than 10000 (i.e., those expressible
with four digits) in all datatypes which use the seven-property model defined in The Seven-property Model (§D.2.1) and
have a non-·absent· value for ·year· (i.e. dateTime, dateTimeStamp, date, gYearMonth, and gYear). .

All ·minimally conforming· processors ���� support ·second· values to milliseconds (i.e. those expressible with three
fraction digits) in all datatypes which use the seven-property model defined in The Seven-property Model (§D.2.1) and
have a non-·absent· value for ·second· (i.e. dateTime, dateTimeStamp, and time). .

All ·minimally conforming· processors ���� support fractional-second duration values to milliseconds (i.e. those
expressible with three fraction digits).

All ·minimally conforming· processors ���� support duration values with ·months· values in the range −119999 to 119999
months (9999 years and 11 months) and ·seconds· values in the range −31622400 to 31622400 seconds (one leap-
year).

A Schema for Schema Documents (Datatypes) (normative)

The XML representation of the datatypes-relevant part of the schema for schema documents is presented here as a normative
part of the specification. Independent copies of this material are available in an undated (mutable) version at http://www.w3.org
/2009/XMLSchema/datatypes.xsd and in a dated (immutable) version at http://www.w3.org/2012/04/datatypes.xsd — the
mutable version will be updated with future revisions of this specification, and the immutable one will not.

Like any other XML document, schema documents may carry XML and document type declarations. An XML declaration and a
document type declaration are provided here for convenience. Since this schema document describes the XML Schema
language, the targetNamespace attribute on the schema element refers to the XML Schema namespace itself.

Schema documents conforming to this specification may be in XML 1.0 or XML 1.1. Conforming implementations may accept
input in XML 1.0 or XML 1.1 or both. See Dependencies on Other Specifications (§1.3).

Schema for Schema Documents (Datatypes)

<?xml version='1.0'?>
<!DOCTYPE xs:schema PUBLIC "-//W3C//DTD XSD 1.1//EN" "XMLSchema.dtd" [

<!--
 Make sure that processors that do not read the external
 subset will know about the various IDs we declare
 -->
 <!ATTLIST xs:simpleType id ID #IMPLIED>
 <!ATTLIST xs:maxExclusive id ID #IMPLIED>
 <!ATTLIST xs:minExclusive id ID #IMPLIED>
 <!ATTLIST xs:maxInclusive id ID #IMPLIED>
 <!ATTLIST xs:minInclusive id ID #IMPLIED>
 <!ATTLIST xs:totalDigits id ID #IMPLIED>
 <!ATTLIST xs:fractionDigits id ID #IMPLIED>
 <!ATTLIST xs:length id ID #IMPLIED>
 <!ATTLIST xs:minLength id ID #IMPLIED>
 <!ATTLIST xs:maxLength id ID #IMPLIED>
 <!ATTLIST xs:enumeration id ID #IMPLIED>
 <!ATTLIST xs:pattern id ID #IMPLIED>
 <!ATTLIST xs:assertion id ID #IMPLIED>
 <!ATTLIST xs:explicitTimezone id ID #IMPLIED>
 <!ATTLIST xs:appinfo id ID #IMPLIED>
 <!ATTLIST xs:documentation id ID #IMPLIED>
 <!ATTLIST xs:list id ID #IMPLIED>
 <!ATTLIST xs:union id ID #IMPLIED>
]>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 xml:lang="en"
 targetNamespace="http://www.w3.org/2001/XMLSchema"
 version="datatypes.xsd (rec-20120405)">
 <xs:annotation>
 <xs:documentation source="../datatypes/datatypes.html">
 The schema corresponding to this document is normative,
 with respect to the syntactic constraints it expresses in the

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

98 of 171 03/07/2021, 05:45

 XML Schema language. The documentation (within 'documentation'
 elements) below, is not normative, but rather highlights important
 aspects of the W3C Recommendation of which this is a part.

 See below (at the bottom of this document) for information about
 the revision and namespace-versioning policy governing this
 schema document.
 </xs:documentation>
 </xs:annotation>

 <xs:simpleType name="derivationControl">
 <xs:annotation>
 <xs:documentation>
 A utility type, not for public use</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="substitution"/>
 <xs:enumeration value="extension"/>
 <xs:enumeration value="restriction"/>
 <xs:enumeration value="list"/>
 <xs:enumeration value="union"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:group name="simpleDerivation">
 <xs:choice>
 <xs:element ref="xs:restriction"/>
 <xs:element ref="xs:list"/>
 <xs:element ref="xs:union"/>
 </xs:choice>
 </xs:group>
 <xs:simpleType name="simpleDerivationSet">
 <xs:annotation>
 <xs:documentation>
 #all or (possibly empty) subset of {restriction, extension, union, list}
 </xs:documentation>
 <xs:documentation>
 A utility type, not for public use</xs:documentation>
 </xs:annotation>
 <xs:union>
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="#all"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType>
 <xs:list>
 <xs:simpleType>
 <xs:restriction base="xs:derivationControl">
 <xs:enumeration value="list"/>
 <xs:enumeration value="union"/>
 <xs:enumeration value="restriction"/>
 <xs:enumeration value="extension"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:list>
 </xs:simpleType>
 </xs:union>
 </xs:simpleType>
 <xs:complexType name="simpleType" abstract="true">
 <xs:complexContent>
 <xs:extension base="xs:annotated">
 <xs:group ref="xs:simpleDerivation"/>
 <xs:attribute name="final" type="xs:simpleDerivationSet"/>
 <xs:attribute name="name" type="xs:NCName">
 <xs:annotation>
 <xs:documentation>
 Can be restricted to required or forbidden
 </xs:documentation>
 </xs:annotation>
 </xs:attribute>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="topLevelSimpleType">
 <xs:complexContent>
 <xs:restriction base="xs:simpleType">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 <xs:group ref="xs:simpleDerivation"/>
 </xs:sequence>
 <xs:attribute name="name" type="xs:NCName" use="required">
 <xs:annotation>
 <xs:documentation>
 Required at the top level
 </xs:documentation>
 </xs:annotation>
 </xs:attribute>
 <xs:anyAttribute namespace="##other" processContents="lax"/>

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

99 of 171 03/07/2021, 05:45

 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="localSimpleType">
 <xs:complexContent>
 <xs:restriction base="xs:simpleType">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 <xs:group ref="xs:simpleDerivation"/>
 </xs:sequence>
 <xs:attribute name="name" use="prohibited">
 <xs:annotation>
 <xs:documentation>
 Forbidden when nested
 </xs:documentation>
 </xs:annotation>
 </xs:attribute>
 <xs:attribute name="final" use="prohibited"/>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="simpleType" type="xs:topLevelSimpleType" id="simpleType">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema11-2/#element-simpleType"/>
 </xs:annotation>
 </xs:element>
 <xs:element name="facet" abstract="true">
 <xs:annotation>
 <xs:documentation>
 An abstract element, representing facets in general.
 The facets defined by this spec are substitutable for
 this element, and implementation-defined facets should
 also name this as a substitution-group head.
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:group name="simpleRestrictionModel">
 <xs:sequence>
 <xs:element name="simpleType" type="xs:localSimpleType" minOccurs="0"/>
 <xs:choice minOccurs="0"
 maxOccurs="unbounded">
 <xs:element ref="xs:facet"/>
 <xs:any processContents="lax"
 namespace="##other"/>
 </xs:choice>
 </xs:sequence>
 </xs:group>
 <xs:element name="restriction" id="restriction">
 <xs:complexType>
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema11-2/#element-restriction">
 base attribute and simpleType child are mutually
 exclusive, but one or other is required
 </xs:documentation>
 </xs:annotation>
 <xs:complexContent>
 <xs:extension base="xs:annotated">
 <xs:group ref="xs:simpleRestrictionModel"/>
 <xs:attribute name="base" type="xs:QName" use="optional"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="list" id="list">
 <xs:complexType>
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema11-2/#element-list">
 itemType attribute and simpleType child are mutually
 exclusive, but one or other is required
 </xs:documentation>
 </xs:annotation>
 <xs:complexContent>
 <xs:extension base="xs:annotated">
 <xs:sequence>
 <xs:element name="simpleType" type="xs:localSimpleType"
 minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="itemType" type="xs:QName" use="optional"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="union" id="union">
 <xs:complexType>
 <xs:annotation>

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

100 of 171 03/07/2021, 05:45

 <xs:documentation
 source="http://www.w3.org/TR/xmlschema11-2/#element-union">
 memberTypes attribute must be non-empty or there must be
 at least one simpleType child
 </xs:documentation>
 </xs:annotation>
 <xs:complexContent>
 <xs:extension base="xs:annotated">
 <xs:sequence>
 <xs:element name="simpleType" type="xs:localSimpleType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="memberTypes" use="optional">
 <xs:simpleType>
 <xs:list itemType="xs:QName"/>
 </xs:simpleType>
 </xs:attribute>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="facet">
 <xs:complexContent>
 <xs:extension base="xs:annotated">
 <xs:attribute name="value" use="required"/>
 <xs:attribute name="fixed" type="xs:boolean" default="false"
 use="optional"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="noFixedFacet">
 <xs:complexContent>
 <xs:restriction base="xs:facet">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="fixed" use="prohibited"/>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="minExclusive" type="xs:facet"
 id="minExclusive"
 substitutionGroup="xs:facet">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema11-2/#element-minExclusive"/>
 </xs:annotation>
 </xs:element>
 <xs:element name="minInclusive" type="xs:facet"
 id="minInclusive"
 substitutionGroup="xs:facet">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema11-2/#element-minInclusive"/>
 </xs:annotation>
 </xs:element>
 <xs:element name="maxExclusive" type="xs:facet"
 id="maxExclusive"
 substitutionGroup="xs:facet">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema11-2/#element-maxExclusive"/>
 </xs:annotation>
 </xs:element>
 <xs:element name="maxInclusive" type="xs:facet"
 id="maxInclusive"
 substitutionGroup="xs:facet">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema11-2/#element-maxInclusive"/>
 </xs:annotation>
 </xs:element>
 <xs:complexType name="numFacet">
 <xs:complexContent>
 <xs:restriction base="xs:facet">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="value"
 type="xs:nonNegativeInteger" use="required"/>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>

 <xs:complexType name="intFacet">
 <xs:complexContent>
 <xs:restriction base="xs:facet">

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

101 of 171 03/07/2021, 05:45

 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="value" type="xs:integer" use="required"/>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>

 <xs:element name="totalDigits" id="totalDigits"
 substitutionGroup="xs:facet">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema11-2/#element-totalDigits"/>
 </xs:annotation>
 <xs:complexType>
 <xs:complexContent>
 <xs:restriction base="xs:numFacet">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="value" type="xs:positiveInteger" use="required"/>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="fractionDigits" type="xs:numFacet"
 id="fractionDigits"
 substitutionGroup="xs:facet">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema11-2/#element-fractionDigits"/>
 </xs:annotation>
 </xs:element>

 <xs:element name="length" type="xs:numFacet" id="length"
 substitutionGroup="xs:facet">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema11-2/#element-length"/>
 </xs:annotation>
 </xs:element>
 <xs:element name="minLength" type="xs:numFacet"
 id="minLength"
 substitutionGroup="xs:facet">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema11-2/#element-minLength"/>
 </xs:annotation>
 </xs:element>
 <xs:element name="maxLength" type="xs:numFacet"
 id="maxLength"
 substitutionGroup="xs:facet">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema11-2/#element-maxLength"/>
 </xs:annotation>
 </xs:element>
 <xs:element name="enumeration" type="xs:noFixedFacet"
 id="enumeration"
 substitutionGroup="xs:facet">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema11-2/#element-enumeration"/>
 </xs:annotation>
 </xs:element>
 <xs:element name="whiteSpace" id="whiteSpace"
 substitutionGroup="xs:facet">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema11-2/#element-whiteSpace"/>
 </xs:annotation>
 <xs:complexType>
 <xs:complexContent>
 <xs:restriction base="xs:facet">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="value" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="preserve"/>
 <xs:enumeration value="replace"/>
 <xs:enumeration value="collapse"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:anyAttribute namespace="##other" processContents="lax"/>

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

102 of 171 03/07/2021, 05:45

 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="pattern" id="pattern"
 substitutionGroup="xs:facet">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema11-2/#element-pattern"/>
 </xs:annotation>
 <xs:complexType>
 <xs:complexContent>
 <xs:restriction base="xs:noFixedFacet">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="value" type="xs:string"
 use="required"/>
 <xs:anyAttribute namespace="##other"
 processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="assertion" type="xs:assertion"
 id="assertion" substitutionGroup="xs:facet">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema11-2/#element-assertion"/>
 </xs:annotation>
 </xs:element>
 <xs:element name="explicitTimezone" id="explicitTimezone"
 substitutionGroup="xs:facet">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema11-2/#element-explicitTimezone"/>
 </xs:annotation>
 <xs:complexType>
 <xs:complexContent>
 <xs:restriction base="xs:facet">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="value" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="optional"/>
 <xs:enumeration value="required"/>
 <xs:enumeration value="prohibited"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>

 <xs:annotation>
 <xs:documentation>
 In keeping with the XML Schema WG's standard versioning policy,
 this schema document will persist at the URI
 http://www.w3.org/2012/04/datatypes.xsd.

 At the date of issue it can also be found at the URI
 http://www.w3.org/2009/XMLSchema/datatypes.xsd.

 The schema document at that URI may however change in the future,
 in order to remain compatible with the latest version of XSD
 and its namespace. In other words, if XSD or the XML Schema
 namespace change, the version of this document at
 http://www.w3.org/2009/XMLSchema/datatypes.xsd will change accordingly;
 the version at http://www.w3.org/2012/04/datatypes.xsd will not change.

 Previous dated (and unchanging) versions of this schema document
 include:

 http://www.w3.org/2012/01/datatypes.xsd
 (XSD 1.1 Proposed Recommendation)

 http://www.w3.org/2011/07/datatypes.xsd
 (XSD 1.1 Candidate Recommendation)

 http://www.w3.org/2009/04/datatypes.xsd
 (XSD 1.1 Candidate Recommendation)

 http://www.w3.org/2004/10/datatypes.xsd
 (XSD 1.0 Recommendation, Second Edition)

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

103 of 171 03/07/2021, 05:45

 http://www.w3.org/2001/05/datatypes.xsd
 (XSD 1.0 Recommendation, First Edition)

 </xs:documentation>
 </xs:annotation>

</xs:schema>

B DTD for Datatype Definitions (non-normative)

The DTD for the datatypes-specific aspects of schema documents is given below. Note there is no implication here that schema
���� be the root element of a document.

DTD for datatype definitions

<!--
 DTD for XML Schemas: Part 2: Datatypes

 Id: datatypes.dtd,v 1.1.2.4 2005/01/31 18:40:42 cmsmcq Exp
 Note this DTD is NOT normative, or even definitive.
 -->

<!--
 This DTD cannot be used on its own, it is intended
 only for incorporation in XMLSchema.dtd, q.v.
 -->

<!-- Define all the element names, with optional prefix -->
<!ENTITY % simpleType "%p;simpleType">
<!ENTITY % restriction "%p;restriction">
<!ENTITY % list "%p;list">
<!ENTITY % union "%p;union">
<!ENTITY % maxExclusive "%p;maxExclusive">
<!ENTITY % minExclusive "%p;minExclusive">
<!ENTITY % maxInclusive "%p;maxInclusive">
<!ENTITY % minInclusive "%p;minInclusive">
<!ENTITY % totalDigits "%p;totalDigits">
<!ENTITY % fractionDigits "%p;fractionDigits">

<!ENTITY % length "%p;length">
<!ENTITY % minLength "%p;minLength">
<!ENTITY % maxLength "%p;maxLength">
<!ENTITY % enumeration "%p;enumeration">
<!ENTITY % whiteSpace "%p;whiteSpace">
<!ENTITY % pattern "%p;pattern">

<!ENTITY % assertion "%p;assertion">

<!ENTITY % explicitTimezone "%p;explicitTimezone">

<!--
 Customization entities for the ATTLIST of each element
 type. Define one of these if your schema takes advantage
 of the anyAttribute='##other' in the schema for schemas
 -->

<!ENTITY % simpleTypeAttrs "">
<!ENTITY % restrictionAttrs "">
<!ENTITY % listAttrs "">
<!ENTITY % unionAttrs "">
<!ENTITY % maxExclusiveAttrs "">
<!ENTITY % minExclusiveAttrs "">
<!ENTITY % maxInclusiveAttrs "">
<!ENTITY % minInclusiveAttrs "">
<!ENTITY % totalDigitsAttrs "">
<!ENTITY % fractionDigitsAttrs "">
<!ENTITY % lengthAttrs "">
<!ENTITY % minLengthAttrs "">
<!ENTITY % maxLengthAttrs "">

<!ENTITY % enumerationAttrs "">
<!ENTITY % whiteSpaceAttrs "">
<!ENTITY % patternAttrs "">
<!ENTITY % assertionAttrs "">
<!ENTITY % explicitTimezoneAttrs "">

<!-- Define some entities for informative use as attribute
 types -->
<!ENTITY % URIref "CDATA">
<!ENTITY % XPathExpr "CDATA">
<!ENTITY % QName "NMTOKEN">

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

104 of 171 03/07/2021, 05:45

<!ENTITY % QNames "NMTOKENS">
<!ENTITY % NCName "NMTOKEN">
<!ENTITY % nonNegativeInteger "NMTOKEN">
<!ENTITY % boolean "(true|false)">
<!ENTITY % simpleDerivationSet "CDATA">
<!--
 #all or space-separated list drawn from derivationChoice
 -->

<!--
 Note that the use of 'facet' below is less restrictive
 than is really intended: There should in fact be no
 more than one of each of minInclusive, minExclusive,
 maxInclusive, maxExclusive, totalDigits, fractionDigits,
 length, maxLength, minLength within datatype,
 and the min- and max- variants of Inclusive and Exclusive
 are mutually exclusive. On the other hand, pattern and
 enumeration and assertion may repeat.
 -->
<!ENTITY % minBound "(%minInclusive; | %minExclusive;)">
<!ENTITY % maxBound "(%maxInclusive; | %maxExclusive;)">
<!ENTITY % bounds "%minBound; | %maxBound;">
<!ENTITY % numeric "%totalDigits; | %fractionDigits;">
<!ENTITY % ordered "%bounds; | %numeric;">
<!ENTITY % unordered
 "%pattern; | %enumeration; | %whiteSpace; | %length; |
 %maxLength; | %minLength; | %assertion;
 | %explicitTimezone;">
<!ENTITY % implementation-defined-facets "">
<!ENTITY % facet "%ordered; | %unordered; %implementation-defined-facets;">
<!ENTITY % facetAttr
 "value CDATA #REQUIRED
 id ID #IMPLIED">
<!ENTITY % fixedAttr "fixed %boolean; #IMPLIED">
<!ENTITY % facetModel "(%annotation;)?">
<!ELEMENT %simpleType;
 ((%annotation;)?, (%restriction; | %list; | %union;))>
<!ATTLIST %simpleType;
 name %NCName; #IMPLIED
 final %simpleDerivationSet; #IMPLIED
 id ID #IMPLIED
 %simpleTypeAttrs;>
<!-- name is required at top level -->
<!ELEMENT %restriction; ((%annotation;)?,
 (%restriction1; |
 ((%simpleType;)?,(%facet;)*)),
 (%attrDecls;))>
<!ATTLIST %restriction;
 base %QName; #IMPLIED
 id ID #IMPLIED
 %restrictionAttrs;>
<!--
 base and simpleType child are mutually exclusive,
 one is required.

 restriction is shared between simpleType and
 simpleContent and complexContent (in XMLSchema.xsd).
 restriction1 is for the latter cases, when this
 is restricting a complex type, as is attrDecls.
 -->
<!ELEMENT %list; ((%annotation;)?,(%simpleType;)?)>
<!ATTLIST %list;
 itemType %QName; #IMPLIED
 id ID #IMPLIED
 %listAttrs;>
<!--
 itemType and simpleType child are mutually exclusive,
 one is required
 -->
<!ELEMENT %union; ((%annotation;)?,(%simpleType;)*)>
<!ATTLIST %union;
 id ID #IMPLIED
 memberTypes %QNames; #IMPLIED
 %unionAttrs;>
<!--
 At least one item in memberTypes or one simpleType
 child is required
 -->

<!ELEMENT %maxExclusive; %facetModel;>
<!ATTLIST %maxExclusive;
 %facetAttr;
 %fixedAttr;
 %maxExclusiveAttrs;>
<!ELEMENT %minExclusive; %facetModel;>
<!ATTLIST %minExclusive;
 %facetAttr;
 %fixedAttr;
 %minExclusiveAttrs;>

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

105 of 171 03/07/2021, 05:45

<!ELEMENT %maxInclusive; %facetModel;>
<!ATTLIST %maxInclusive;
 %facetAttr;
 %fixedAttr;
 %maxInclusiveAttrs;>
<!ELEMENT %minInclusive; %facetModel;>
<!ATTLIST %minInclusive;
 %facetAttr;
 %fixedAttr;
 %minInclusiveAttrs;>

<!ELEMENT %totalDigits; %facetModel;>
<!ATTLIST %totalDigits;
 %facetAttr;
 %fixedAttr;
 %totalDigitsAttrs;>
<!ELEMENT %fractionDigits; %facetModel;>
<!ATTLIST %fractionDigits;
 %facetAttr;
 %fixedAttr;
 %fractionDigitsAttrs;>

<!ELEMENT %length; %facetModel;>
<!ATTLIST %length;
 %facetAttr;
 %fixedAttr;
 %lengthAttrs;>
<!ELEMENT %minLength; %facetModel;>
<!ATTLIST %minLength;
 %facetAttr;
 %fixedAttr;
 %minLengthAttrs;>
<!ELEMENT %maxLength; %facetModel;>
<!ATTLIST %maxLength;
 %facetAttr;
 %fixedAttr;
 %maxLengthAttrs;>

<!-- This one can be repeated -->
<!ELEMENT %enumeration; %facetModel;>
<!ATTLIST %enumeration;
 %facetAttr;
 %enumerationAttrs;>

<!ELEMENT %whiteSpace; %facetModel;>
<!ATTLIST %whiteSpace;
 %facetAttr;
 %fixedAttr;
 %whiteSpaceAttrs;>

<!-- This one can be repeated -->
<!ELEMENT %pattern; %facetModel;>
<!ATTLIST %pattern;
 %facetAttr;
 %patternAttrs;>

<!ELEMENT %assertion; %facetModel;>
<!ATTLIST %assertion;
 %facetAttr;
 %assertionAttrs;>

<!ELEMENT %explicitTimezone; %facetModel;>
<!ATTLIST %explicitTimezone;
 %facetAttr;
 %explicitTimezoneAttrs;>

C Illustrative XML representations for the built-in simple type definitions

C.1 Illustrative XML representations for the built-in primitive type definitions

The following, although in the form of a schema document, does not conform to the rules for schema documents defined in this
specification. It contains explicit XML representations of the primitive datatypes which need not be declared in a schema
document, since they are automatically included in every schema, and indeed must not be declared in a schema document,
since it is forbidden to try to derive types with anyAtomicType as the base type definition. It is included here as a form of
documentation.

The (not a) schema document for primitive built-in type definitions

<?xml version='1.0'?>
<!DOCTYPE xs:schema SYSTEM "../namespace/XMLSchema.dtd" [

<!--

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

106 of 171 03/07/2021, 05:45

 keep this schema XML1.0 DTD valid
 -->
 <!ENTITY % schemaAttrs 'xmlns:hfp CDATA #IMPLIED'>

 <!ELEMENT hfp:hasFacet EMPTY>
 <!ATTLIST hfp:hasFacet
 name NMTOKEN #REQUIRED>

 <!ELEMENT hfp:hasProperty EMPTY>
 <!ATTLIST hfp:hasProperty
 name NMTOKEN #REQUIRED
 value CDATA #REQUIRED>
]>
<xs:schema
 xmlns:hfp="http://www.w3.org/2001/XMLSchema-hasFacetAndProperty"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 xml:lang="en"
 targetNamespace="http://www.w3.org/2001/XMLSchema">

 <xs:annotation>
 <xs:documentation>
 This document contains XML elements which look like
 definitions for the primitive datatypes. These definitions are for
 information only; the real built-in definitions are magic.
 </xs:documentation>
 <xs:documentation>
 For each built-in datatype in this schema (both primitive and
 derived) can be uniquely addressed via a URI constructed
 as follows:
 1) the base URI is the URI of the XML Schema namespace
 2) the fragment identifier is the name of the datatype

 For example, to address the int datatype, the URI is:

 http://www.w3.org/2001/XMLSchema#int

 Additionally, each facet definition element can be uniquely
 addressed via a URI constructed as follows:
 1) the base URI is the URI of the XML Schema namespace
 2) the fragment identifier is the name of the facet

 For example, to address the maxInclusive facet, the URI is:

 http://www.w3.org/2001/XMLSchema#maxInclusive

 Additionally, each facet usage in a built-in datatype definition
 can be uniquely addressed via a URI constructed as follows:
 1) the base URI is the URI of the XML Schema namespace
 2) the fragment identifier is the name of the datatype, followed
 by a period (".") followed by the name of the facet

 For example, to address the usage of the maxInclusive facet in
 the definition of int, the URI is:

 http://www.w3.org/2001/XMLSchema#int.maxInclusive

 </xs:documentation>
 </xs:annotation>
 <xs:simpleType name="string" id="string">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="length"/>
 <hfp:hasFacet name="minLength"/>
 <hfp:hasFacet name="maxLength"/>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="assertions"/>
 <hfp:hasProperty name="ordered" value="false"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#string"/>
 </xs:annotation>
 <xs:restriction base="xs:anyAtomicType">
 <xs:whiteSpace value="preserve" id="string.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="boolean" id="boolean">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="assertions"/>
 <hfp:hasProperty name="ordered" value="false"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="finite"/>

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

107 of 171 03/07/2021, 05:45

 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#boolean"/>
 </xs:annotation>
 <xs:restriction base="xs:anyAtomicType">
 <xs:whiteSpace fixed="true" value="collapse" id="boolean.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="float" id="float">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="maxInclusive"/>
 <hfp:hasFacet name="maxExclusive"/>
 <hfp:hasFacet name="minInclusive"/>
 <hfp:hasFacet name="minExclusive"/>
 <hfp:hasFacet name="assertions"/>
 <hfp:hasProperty name="ordered" value="partial"/>
 <hfp:hasProperty name="bounded" value="true"/>
 <hfp:hasProperty name="cardinality" value="finite"/>
 <hfp:hasProperty name="numeric" value="true"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#float"/>
 </xs:annotation>
 <xs:restriction base="xs:anyAtomicType">
 <xs:whiteSpace fixed="true" value="collapse" id="float.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="double" id="double">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="maxInclusive"/>
 <hfp:hasFacet name="maxExclusive"/>
 <hfp:hasFacet name="minInclusive"/>
 <hfp:hasFacet name="minExclusive"/>
 <hfp:hasFacet name="assertions"/>
 <hfp:hasProperty name="ordered" value="partial"/>
 <hfp:hasProperty name="bounded" value="true"/>
 <hfp:hasProperty name="cardinality" value="finite"/>
 <hfp:hasProperty name="numeric" value="true"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#double"/>
 </xs:annotation>
 <xs:restriction base="xs:anyAtomicType">
 <xs:whiteSpace fixed="true" value="collapse" id="double.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="decimal" id="decimal">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="totalDigits"/>
 <hfp:hasFacet name="fractionDigits"/>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="maxInclusive"/>
 <hfp:hasFacet name="maxExclusive"/>
 <hfp:hasFacet name="minInclusive"/>
 <hfp:hasFacet name="minExclusive"/>
 <hfp:hasFacet name="assertions"/>
 <hfp:hasProperty name="ordered" value="total"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="true"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#decimal"/>
 </xs:annotation>
 <xs:restriction base="xs:anyAtomicType">
 <xs:whiteSpace fixed="true" value="collapse" id="decimal.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="duration" id="duration">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="maxInclusive"/>
 <hfp:hasFacet name="maxExclusive"/>
 <hfp:hasFacet name="minInclusive"/>
 <hfp:hasFacet name="minExclusive"/>
 <hfp:hasFacet name="assertions"/>
 <hfp:hasProperty name="ordered" value="partial"/>

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

108 of 171 03/07/2021, 05:45

 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#duration"/>
 </xs:annotation>
 <xs:restriction base="xs:anyAtomicType">
 <xs:whiteSpace fixed="true" value="collapse" id="duration.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="dateTime" id="dateTime">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="maxInclusive"/>
 <hfp:hasFacet name="maxExclusive"/>
 <hfp:hasFacet name="minInclusive"/>
 <hfp:hasFacet name="minExclusive"/>
 <hfp:hasFacet name="assertions"/>
 <hfp:hasFacet name="explicitTimezone"/>
 <hfp:hasProperty name="ordered" value="partial"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#dateTime"/>
 </xs:annotation>
 <xs:restriction base="xs:anyAtomicType">
 <xs:whiteSpace fixed="true" value="collapse" id="dateTime.whiteSpace"/>
 <xs:explicitTimezone value="optional" id="dateTime.explicitTimezone"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="time" id="time">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="maxInclusive"/>
 <hfp:hasFacet name="maxExclusive"/>
 <hfp:hasFacet name="minInclusive"/>
 <hfp:hasFacet name="minExclusive"/>
 <hfp:hasFacet name="assertions"/>
 <hfp:hasFacet name="explicitTimezone"/>
 <hfp:hasProperty name="ordered" value="partial"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#time"/>
 </xs:annotation>
 <xs:restriction base="xs:anyAtomicType">
 <xs:whiteSpace fixed="true" value="collapse" id="time.whiteSpace"/>
 <xs:explicitTimezone value="optional" id="time.explicitTimezone"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="date" id="date">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="maxInclusive"/>
 <hfp:hasFacet name="maxExclusive"/>
 <hfp:hasFacet name="minInclusive"/>
 <hfp:hasFacet name="minExclusive"/>
 <hfp:hasFacet name="assertions"/>
 <hfp:hasFacet name="explicitTimezone"/>
 <hfp:hasProperty name="ordered" value="partial"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#date"/>
 </xs:annotation>
 <xs:restriction base="xs:anyAtomicType">
 <xs:whiteSpace fixed="true" value="collapse" id="date.whiteSpace"/>
 <xs:explicitTimezone value="optional" id="date.explicitTimezone"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="gYearMonth" id="gYearMonth">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="maxInclusive"/>

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

109 of 171 03/07/2021, 05:45

 <hfp:hasFacet name="maxExclusive"/>
 <hfp:hasFacet name="minInclusive"/>
 <hfp:hasFacet name="minExclusive"/>
 <hfp:hasFacet name="assertions"/>
 <hfp:hasFacet name="explicitTimezone"/>
 <hfp:hasProperty name="ordered" value="partial"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#gYearMonth"/>
 </xs:annotation>
 <xs:restriction base="xs:anyAtomicType">
 <xs:whiteSpace fixed="true" value="collapse" id="gYearMonth.whiteSpace"/>
 <xs:explicitTimezone value="optional" id="gYearMonth.explicitTimezone"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="gYear" id="gYear">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="maxInclusive"/>
 <hfp:hasFacet name="maxExclusive"/>
 <hfp:hasFacet name="minInclusive"/>
 <hfp:hasFacet name="minExclusive"/>
 <hfp:hasFacet name="assertions"/>
 <hfp:hasFacet name="explicitTimezone"/>
 <hfp:hasProperty name="ordered" value="partial"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#gYear"/>
 </xs:annotation>
 <xs:restriction base="xs:anyAtomicType">
 <xs:whiteSpace fixed="true" value="collapse" id="gYear.whiteSpace"/>
 <xs:explicitTimezone value="optional" id="gYear.explicitTimezone"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="gMonthDay" id="gMonthDay">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="maxInclusive"/>
 <hfp:hasFacet name="maxExclusive"/>
 <hfp:hasFacet name="minInclusive"/>
 <hfp:hasFacet name="minExclusive"/>
 <hfp:hasFacet name="assertions"/>
 <hfp:hasFacet name="explicitTimezone"/>
 <hfp:hasProperty name="ordered" value="partial"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#gMonthDay"/>
 </xs:annotation>
 <xs:restriction base="xs:anyAtomicType">
 <xs:whiteSpace fixed="true" value="collapse" id="gMonthDay.whiteSpace"/>
 <xs:explicitTimezone value="optional" id="gMonthDay.explicitTimezone"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="gDay" id="gDay">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="maxInclusive"/>
 <hfp:hasFacet name="maxExclusive"/>
 <hfp:hasFacet name="minInclusive"/>
 <hfp:hasFacet name="minExclusive"/>
 <hfp:hasFacet name="assertions"/>
 <hfp:hasFacet name="explicitTimezone"/>
 <hfp:hasProperty name="ordered" value="partial"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#gDay"/>
 </xs:annotation>
 <xs:restriction base="xs:anyAtomicType">
 <xs:whiteSpace fixed="true" value="collapse" id="gDay.whiteSpace"/>
 <xs:explicitTimezone value="optional" id="gDay.explicitTimezone"/>
 </xs:restriction>
 </xs:simpleType>

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

110 of 171 03/07/2021, 05:45

 <xs:simpleType name="gMonth" id="gMonth">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="maxInclusive"/>
 <hfp:hasFacet name="maxExclusive"/>
 <hfp:hasFacet name="minInclusive"/>
 <hfp:hasFacet name="minExclusive"/>
 <hfp:hasFacet name="assertions"/>
 <hfp:hasFacet name="explicitTimezone"/>
 <hfp:hasProperty name="ordered" value="partial"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#gMonth"/>
 </xs:annotation>
 <xs:restriction base="xs:anyAtomicType">
 <xs:whiteSpace fixed="true" value="collapse" id="gMonth.whiteSpace"/>
 <xs:explicitTimezone value="optional" id="gMonth.explicitTimezone"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="hexBinary" id="hexBinary">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="length"/>
 <hfp:hasFacet name="minLength"/>
 <hfp:hasFacet name="maxLength"/>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="assertions"/>
 <hfp:hasProperty name="ordered" value="false"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#hexBinary"/>
 </xs:annotation>
 <xs:restriction base="xs:anyAtomicType">
 <xs:whiteSpace fixed="true" value="collapse" id="hexBinary.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="base64Binary" id="base64Binary">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="length"/>
 <hfp:hasFacet name="minLength"/>
 <hfp:hasFacet name="maxLength"/>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="assertions"/>
 <hfp:hasProperty name="ordered" value="false"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#base64Binary"/>
 </xs:annotation>
 <xs:restriction base="xs:anyAtomicType">
 <xs:whiteSpace fixed="true" value="collapse" id="base64Binary.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="anyURI" id="anyURI">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="length"/>
 <hfp:hasFacet name="minLength"/>
 <hfp:hasFacet name="maxLength"/>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="assertions"/>
 <hfp:hasProperty name="ordered" value="false"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#anyURI"/>
 </xs:annotation>
 <xs:restriction base="xs:anyAtomicType">
 <xs:whiteSpace fixed="true" value="collapse" id="anyURI.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="QName" id="QName">
 <xs:annotation>

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

111 of 171 03/07/2021, 05:45

 <xs:appinfo>
 <hfp:hasFacet name="length"/>
 <hfp:hasFacet name="minLength"/>
 <hfp:hasFacet name="maxLength"/>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="assertions"/>
 <hfp:hasProperty name="ordered" value="false"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#QName"/>
 </xs:annotation>
 <xs:restriction base="xs:anyAtomicType">
 <xs:whiteSpace fixed="true" value="collapse" id="QName.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="NOTATION" id="NOTATION">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="length"/>
 <hfp:hasFacet name="minLength"/>
 <hfp:hasFacet name="maxLength"/>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="assertions"/>
 <hfp:hasProperty name="ordered" value="false"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#NOTATION"/>
 <xs:documentation>
 NOTATION cannot be used directly in a schema; rather a type
 must be derived from it by specifying at least one enumeration
 facet whose value is the name of a NOTATION declared in the
 schema.
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:anyAtomicType">
 <xs:whiteSpace fixed="true" value="collapse" id="NOTATION.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>
</xs:schema>

C.2 Illustrative XML representations for the built-in ordinary type definitions

The following, although in the form of a schema document, contains XML representations of components already present in all
schemas by definition. It is included here as a form of documentation.

Note: These datatypes do not need to be declared in a schema document, since they are automatically included in every
schema.

Issue (B-1933):

It is an open question whether this and similar XML documents should be accepted or rejected by software
conforming to this specification. The XML Schema Working Group expects to resolve this question in
connection with its work on issues relating to schema composition.

In the meantime, some existing schema processors will accept declarations for them; other existing processors
will reject such declarations as duplicates.

Illustrative schema document for derived built-in type definitions

<?xml version='1.0'?>
<!DOCTYPE xs:schema SYSTEM "../namespace/XMLSchema.dtd" [

<!--
 keep this schema XML1.0 DTD valid
 -->
 <!ENTITY % schemaAttrs 'xmlns:hfp CDATA #IMPLIED'>

 <!ELEMENT hfp:hasFacet EMPTY>
 <!ATTLIST hfp:hasFacet
 name NMTOKEN #REQUIRED>

 <!ELEMENT hfp:hasProperty EMPTY>
 <!ATTLIST hfp:hasProperty
 name NMTOKEN #REQUIRED

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

112 of 171 03/07/2021, 05:45

 value CDATA #REQUIRED>

]>
<xs:schema
 xmlns:hfp="http://www.w3.org/2001/XMLSchema-hasFacetAndProperty"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 xml:lang="en"
 targetNamespace="http://www.w3.org/2001/XMLSchema">
 <xs:annotation>
 <xs:documentation>
 This document contains XML representations for the
 ordinary non-primitive built-in datatypes
 </xs:documentation>
 </xs:annotation>
 <xs:simpleType name="normalizedString" id="normalizedString">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#normalizedString"/>
 </xs:annotation>
 <xs:restriction base="xs:string">
 <xs:whiteSpace value="replace" id="normalizedString.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="token" id="token">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#token"/>
 </xs:annotation>
 <xs:restriction base="xs:normalizedString">
 <xs:whiteSpace value="collapse" id="token.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="language" id="language">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#language"/>
 </xs:annotation>
 <xs:restriction base="xs:token">
 <xs:pattern value="[a-zA-Z]{1,8}(-[a-zA-Z0-9]{1,8})*" id="language.pattern">
 <xs:annotation>
 <xs:documentation source="http://www.ietf.org/rfc/bcp/bcp47.txt">
 pattern specifies the content of section 2.12 of XML 1.0e2
 and RFC 3066 (Revised version of RFC 1766). N.B. RFC 3066 is now
 obsolete; the grammar of RFC4646 is more restrictive. So strict
 conformance to the rules for language codes requires extra checking
 beyond validation against this type.
 </xs:documentation>
 </xs:annotation>
 </xs:pattern>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="IDREFS" id="IDREFS">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="length"/>
 <hfp:hasFacet name="minLength"/>
 <hfp:hasFacet name="maxLength"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="assertions"/>
 <hfp:hasProperty name="ordered" value="false"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#IDREFS"/>
 </xs:annotation>
 <xs:restriction>
 <xs:simpleType>
 <xs:list itemType="xs:IDREF"/>
 </xs:simpleType>
 <xs:minLength value="1" id="IDREFS.minLength"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="ENTITIES" id="ENTITIES">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="length"/>
 <hfp:hasFacet name="minLength"/>
 <hfp:hasFacet name="maxLength"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="assertions"/>
 <hfp:hasProperty name="ordered" value="false"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#ENTITIES"/>

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

113 of 171 03/07/2021, 05:45

 </xs:annotation>
 <xs:restriction>
 <xs:simpleType>
 <xs:list itemType="xs:ENTITY"/>
 </xs:simpleType>
 <xs:minLength value="1" id="ENTITIES.minLength"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="NMTOKEN" id="NMTOKEN">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#NMTOKEN"/>
 </xs:annotation>
 <xs:restriction base="xs:token">
 <xs:pattern value="\c+" id="NMTOKEN.pattern">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/REC-xml#NT-Nmtoken">
 pattern matches production 7 from the XML spec
 </xs:documentation>
 </xs:annotation>
 </xs:pattern>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="NMTOKENS" id="NMTOKENS">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="length"/>
 <hfp:hasFacet name="minLength"/>
 <hfp:hasFacet name="maxLength"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="assertions"/>
 <hfp:hasProperty name="ordered" value="false"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#NMTOKENS"/>
 </xs:annotation>
 <xs:restriction>
 <xs:simpleType>
 <xs:list itemType="xs:NMTOKEN"/>
 </xs:simpleType>
 <xs:minLength value="1" id="NMTOKENS.minLength"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="Name" id="Name">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#Name"/>
 </xs:annotation>
 <xs:restriction base="xs:token">
 <xs:pattern value="\i\c*" id="Name.pattern">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/REC-xml#NT-Name">
 pattern matches production 5 from the XML spec
 </xs:documentation>
 </xs:annotation>
 </xs:pattern>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="NCName" id="NCName">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#NCName"/>
 </xs:annotation>
 <xs:restriction base="xs:Name">
 <xs:pattern value="[\i-[:]][\c-[:]]*" id="NCName.pattern">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/REC-xml-names/#NT-NCName">
 pattern matches production 4 from the Namespaces in XML spec
 </xs:documentation>
 </xs:annotation>
 </xs:pattern>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="ID" id="ID">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#ID"/>
 </xs:annotation>
 <xs:restriction base="xs:NCName"/>
 </xs:simpleType>
 <xs:simpleType name="IDREF" id="IDREF">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#IDREF"/>
 </xs:annotation>
 <xs:restriction base="xs:NCName"/>
 </xs:simpleType>
 <xs:simpleType name="ENTITY" id="ENTITY">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#ENTITY"/>

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

114 of 171 03/07/2021, 05:45

 </xs:annotation>
 <xs:restriction base="xs:NCName"/>
 </xs:simpleType>
 <xs:simpleType name="integer" id="integer">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#integer"/>
 </xs:annotation>
 <xs:restriction base="xs:decimal">
 <xs:fractionDigits fixed="true" value="0" id="integer.fractionDigits"/>
 <xs:pattern value="[\-+]?[0-9]+" id="integer.pattern"/>

 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="nonPositiveInteger" id="nonPositiveInteger">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#nonPositiveInteger"/>
 </xs:annotation>
 <xs:restriction base="xs:integer">
 <xs:maxInclusive value="0" id="nonPositiveInteger.maxInclusive"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="negativeInteger" id="negativeInteger">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#negativeInteger"/>
 </xs:annotation>
 <xs:restriction base="xs:nonPositiveInteger">
 <xs:maxInclusive value="-1" id="negativeInteger.maxInclusive"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="long" id="long">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasProperty name="bounded" value="true"/>
 <hfp:hasProperty name="cardinality" value="finite"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#long"/>
 </xs:annotation>
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="-9223372036854775808" id="long.minInclusive"/>
 <xs:maxInclusive value="9223372036854775807" id="long.maxInclusive"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="int" id="int">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#int"/>
 </xs:annotation>
 <xs:restriction base="xs:long">
 <xs:minInclusive value="-2147483648" id="int.minInclusive"/>
 <xs:maxInclusive value="2147483647" id="int.maxInclusive"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="short" id="short">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#short"/>
 </xs:annotation>
 <xs:restriction base="xs:int">
 <xs:minInclusive value="-32768" id="short.minInclusive"/>
 <xs:maxInclusive value="32767" id="short.maxInclusive"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="byte" id="byte">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#byte"/>
 </xs:annotation>
 <xs:restriction base="xs:short">
 <xs:minInclusive value="-128" id="byte.minInclusive"/>
 <xs:maxInclusive value="127" id="byte.maxInclusive"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="nonNegativeInteger" id="nonNegativeInteger">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#nonNegativeInteger"/>
 </xs:annotation>
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="0" id="nonNegativeInteger.minInclusive"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="unsignedLong" id="unsignedLong">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasProperty name="bounded" value="true"/>
 <hfp:hasProperty name="cardinality" value="finite"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#unsignedLong"/>
 </xs:annotation>
 <xs:restriction base="xs:nonNegativeInteger">
 <xs:maxInclusive value="18446744073709551615" id="unsignedLong.maxInclusive"/>
 </xs:restriction>
 </xs:simpleType>

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

115 of 171 03/07/2021, 05:45

 <xs:simpleType name="unsignedInt" id="unsignedInt">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#unsignedInt"/>
 </xs:annotation>
 <xs:restriction base="xs:unsignedLong">
 <xs:maxInclusive value="4294967295" id="unsignedInt.maxInclusive"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="unsignedShort" id="unsignedShort">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#unsignedShort"/>
 </xs:annotation>
 <xs:restriction base="xs:unsignedInt">
 <xs:maxInclusive value="65535" id="unsignedShort.maxInclusive"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="unsignedByte" id="unsignedByte">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#unsignedByte"/>
 </xs:annotation>
 <xs:restriction base="xs:unsignedShort">
 <xs:maxInclusive value="255" id="unsignedByte.maxInclusive"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="positiveInteger" id="positiveInteger">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#positiveInteger"/>
 </xs:annotation>
 <xs:restriction base="xs:nonNegativeInteger">
 <xs:minInclusive value="1" id="positiveInteger.minInclusive"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="yearMonthDuration">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#yearMonthDuration">
 This type includes just those durations expressed in years and months.
 Since the pattern given excludes days, hours, minutes, and seconds,
 the values of this type have a seconds property of zero. They are
 totally ordered.
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:duration">
 <xs:pattern id="yearMonthDuration.pattern" value="[^DT]*"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="dayTimeDuration">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#dayTimeDuration">
 This type includes just those durations expressed in days, hours, minutes, and seconds.
 The pattern given excludes years and months, so the values of this type
 have a months property of zero. They are totally ordered.
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:duration">
 <xs:pattern id="dayTimeDuration.pattern" value="[^YM]*(T.*)?"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="dateTimeStamp" id="dateTimeStamp">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#dateTimeStamp">
 This datatype includes just those dateTime values Whose explicitTimezone
 is present. They are totally ordered.
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:dateTime">
 <xs:explicitTimezone fixed="true"
 id="dateTimeStamp.explicitTimezone" value="required"/>
 </xs:restriction>
 </xs:simpleType>

</xs:schema>

D Built-up Value Spaces

Some datatypes, such as integer, describe well-known mathematically abstract systems. Others, such as the date/time
datatypes, describe "real-life", "applied" systems. Certain of the systems described by datatypes, both abstract and applied,
have values in their value spaces most easily described as things having several properties, which in turn have values which
are in some sense "primitive" or are from the value spaces of simpler datatypes.

In this document, the arguments to functions are assumed to be "call by value" unless explicitly noted to the contrary, meaning
that if the argument is modified during the processing of the algorithm, that modification is not reflected in the "outside world".
On the other hand, the arguments to procedures are assumed to be "call by location", meaning that modifications are so
reflected, since that is the only way the processing of the algorithm can have any effect.

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

116 of 171 03/07/2021, 05:45

Properties always have values. [Definition:] An optional property is permitted but not required to have the distinguished value
absent.

[Definition:] Throughout this specification, the value absent is used as a distinguished value to indicate that a given instance of
a property "has no value" or "is absent". This should not be interpreted as constraining implementations, as for instance
between using a null value for such properties or not representing them at all.

Those values that are more primitive, and are used (among other things) herein to construct object value spaces but which we
do not explicitly define are described here:

A number (without precision) is an ordinary mathematical number; 1, 1.0, and 1.000000000000 are the same number.
The decimal numbers and integers generally used in the algorithms of appendix Function Definitions (§E) are such
ordinary numbers, not carrying precision.

[Definition:] A special value is an object whose only relevant properties for purposes of this specification are that it is
distinct from, and unequal to, any other values (special or otherwise). A few special values in different value spaces (e.g.
positiveInfinity, negativeInfinity, and notANumber in float and double) share names. Thus, special values can be
distinguished from each other in the general case by considering both the name and the primitive datatype of the value; in
some cases, of course, the name alone suffices to identify the value uniquely.

Note: In the case of float and double, the ·special values· are members of the datatype's ·value space·.

D.1 Numerical Values

The following standard operators are defined here in case the reader is unsure of their definition:

[Definition:] If m and n are numbers, then m div n is the greatest integer less than or equal to m / n .

[Definition:] If m and n are numbers, then m mod n is m − n × (m ·div· n) .

Note: n ·div· 1 is a convenient and short way of expressing "the greatest integer less than or equal to n".

D.1.1 Exact Lexical Mappings

Numerals and Fragments Thereof

[45] digit ::= [0-9]

[46] unsignedNoDecimalPtNumeral ::= digit+

[47] noDecimalPtNumeral ::= ('+' | '-')? unsignedNoDecimalPtNumeral

[48] fracFrag ::= digit+

[49] unsignedDecimalPtNumeral ::= (unsignedNoDecimalPtNumeral '.' fracFrag?) | ('.' fracFrag)

[50] unsignedFullDecimalPtNumeral ::= unsignedNoDecimalPtNumeral '.' fracFrag

[51] decimalPtNumeral ::= ('+' | '-')? unsignedDecimalPtNumeral

[52] unsignedScientificNotationNumeral ::= (unsignedNoDecimalPtNumeral | unsignedDecimalPtNumeral) ('e' | 'E')
noDecimalPtNumeral

[53] scientificNotationNumeral ::= ('+' | '-')? unsignedScientificNotationNumeral

Generic Numeral-to-Number Lexical Mappings

·unsignedNoDecimalMap· (N) → integer

Maps an unsignedNoDecimalPtNumeral to its numerical value.

·noDecimalMap· (N) → integer

Maps an noDecimalPtNumeral to its numerical value.

·unsignedDecimalPtMap· (D) → decimal number

Maps an unsignedDecimalPtNumeral to its numerical value.

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

117 of 171 03/07/2021, 05:45

·decimalPtMap· (N) → decimal number

Maps a decimalPtNumeral to its numerical value.

·scientificMap· (N) → decimal number

Maps a scientificNotationNumeral to its numerical value.

Generic Number to Numeral Canonical Mappings

·unsignedNoDecimalPtCanonicalMap· (i) → unsignedNoDecimalPtNumeral

Maps a nonnegative integer to a unsignedNoDecimalPtNumeral, its ·canonical representation·.

·noDecimalPtCanonicalMap· (i) → noDecimalPtNumeral

Maps an integer to a noDecimalPtNumeral, its ·canonical representation·.

·unsignedDecimalPtCanonicalMap· (n) → unsignedDecimalPtNumeral

Maps a nonnegative decimal number to a unsignedDecimalPtNumeral, its ·canonical representation·.

·decimalPtCanonicalMap· (n) → decimalPtNumeral

Maps a decimal number to a decimalPtNumeral, its ·canonical representation·.

·unsignedScientificCanonicalMap· (n) → unsignedScientificNotationNumeral

Maps a nonnegative decimal number to a unsignedScientificNotationNumeral, its ·canonical representation·.

·scientificCanonicalMap· (n) → scientificNotationNumeral

Maps a decimal number to a scientificNotationNumeral, its ·canonical representation·.

Some numerical datatypes include some or all of three non-numerical ·special values·: positiveInfinity, negativeInfinity, and
notANumber. Their lexical spaces include non-numeral lexical representations for these non-numeric values:

Special Non-numerical Lexical Representations Used With Numerical Datatypes

[54] minimalNumericalSpecialRep ::= 'INF' | '-INF' | 'NaN'

[55] numericalSpecialRep ::= '+INF' | minimalNumericalSpecialRep

Lexical Mapping for Non-numerical ·Special Values· Used With Numerical Datatypes

·specialRepValue· (S) → a ·special value·

Maps the ·lexical representations· of ·special values· used with some numerical datatypes to those ·special values·.

Canonical Mapping for Non-numerical ·Special Values· Used with Numerical Datatypes

·specialRepCanonicalMap· (c) → numericalSpecialRep

Maps the ·special values· used with some numerical datatypes to their ·canonical representations·.

D.2 Date/time Values
 D.2.1 The Seven-property Model
 D.2.2 Lexical Mappings

There are several different primitive but related datatypes defined in the specification which pertain to various combinations of
dates and times, and parts thereof. They all use related value-space models, which are described in detail in this section. It is
not difficult for a casual reader of the descriptions of the individual datatypes elsewhere in this specification to misunderstand
some of the details of just what the datatypes are intended to represent, so more detail is presented here in this section.

All of the value spaces for dates and times described here represent moments or periods of time in Universal Coordinated Time
(UTC). [Definition:] Universal Coordinated Time (UTC) is an adaptation of TAI which closely approximates UT1 by adding
·leap-seconds· to selected ·UTC· days.

[Definition:] A leap-second is an additional second added to the last day of December, June, October, or March, when such
an adjustment is deemed necessary by the International Earth Rotation and Reference Systems Service in order to keep ·UTC·
within 0.9 seconds of observed astronomical time. When leap seconds are introduced, the last minute in the day has more

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

118 of 171 03/07/2021, 05:45

than sixty seconds. In theory leap seconds can also be removed from a day, but this has not yet occurred. (See [International
Earth Rotation Service (IERS)], [ITU-R TF.460-6].) Leap seconds are not supported by the types defined here.

Because the dateTime type and other date- and time-related types defined in this specification do not support leap seconds,
there are portions of the ·UTC· timeline which cannot be represented by values of these types. Users whose applications
require that leap seconds be represented and that date/time arithmetic take historically occurring leap seconds into account will
wish to make appropriate adjustments at the application level, or to use other types.

D.2.1 The Seven-property Model

There are two distinct ways to model moments in time: either by tracking their year, month, day, hour, minute and second (with
fractional seconds as needed), or by tracking their time (measured generally in seconds or days) from some starting moment.
Each has its advantages. The two are isomorphic. For definiteness, we choose to model the first using five integer and one
decimal number properties. We superimpose the second by providing one decimal number-valued function which gives the
corresponding count of seconds from zero (the "time on the time line").

There is also a seventh integer property which specifies the time zone offset as the number of minutes of offset from UTC.
Values for the six primary properties are always stored in their "local" values (the values shown in the lexical representations),
rather than converted to ·UTC·.

Properties of Date/time Seven-property Models

·year·

an integer

·month·

an integer between 1 and 12 inclusive

·day·

an integer between 1 and 31 inclusive, possibly restricted further depending on ·month· and ·year·

·hour·

an integer between 0 and 23 inclusive

·minute·

an integer between 0 and 59 inclusive

·second·

a decimal number greater than or equal to 0 and less than 60.

·timezoneOffset·

an ·optional· integer between −840 and 840 inclusive

Non-negative values of the properties map to the years, months, days of month, etc. of the Gregorian calendar in the obvious
way. Values less than 1582 in the ·year· property represent years in the "proleptic Gregorian calendar". A value of zero in the
·year· property represents the year 1 BCE; a value of −1 represents the year 2 BCE, −2 is 3 BCE, etc.

Note: In version 1.0 of this specification, the ·year· property was not permitted to have the value zero. The year before the
year 1 in the proleptic Gregorian calendar, traditionally referred to as 1 BC or as 1 BCE, was represented by a ·year· value
of −1, 2 BCE by −2, and so forth. Of course, many, perhaps most, references to 1 BCE (or 1 BC) actually refer not to a
year in the proleptic Gregorian calendar but to a year in the Julian or "old style" calendar; the two correspond
approximately but not exactly to each other.

In this version of this specification, two changes are made in order to agree with existing usage. First, ·year· is permitted to
have the value zero. Second, the interpretation of ·year· values is changed accordingly: a ·year· value of zero represents 1
BCE, −1 represents 2 BCE, etc. This representation simplifies interval arithmetic and leap-year calculation for dates before
the common era (which may be why astronomers and others interested in such calculations with the proleptic Gregorian
calendar have adopted it), and is consistent with the current edition of [ISO 8601].

Note that 1 BCE, 5 BCE, and so on (years 0000, −0004, etc. in the lexical representation defined here) are leap years in
the proleptic Gregorian calendar used for the date/time datatypes defined here. Version 1.0 of this specification was
unclear about the treatment of leap years before the common era. If existing schemas or data specify dates of 29 February
for any years before the common era, then some values giving a date of 29 February which were valid under a plausible
interpretation of XSD 1.0 will be invalid under this specification, and some which were invalid will be valid. With that
possible exception, schemas and data valid under the old interpretation remain valid under the new.

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

119 of 171 03/07/2021, 05:45

The model just described is called herein the "seven-property" model for date/time datatypes. It is used "as is" for dateTime; all
other date/time datatypes except duration use the same model except that some of the six primary properties are required to
have the value absent, instead of being required to have a numerical value. (An ·optional· property, like ·timezoneOffset·, is
always permitted to have the value absent.)

·timezoneOffset· values are limited to 14 hours, which is 840 (= 60 × 14) minutes.

Note: Leap-seconds are not permitted

Readers interested in when leap-seconds have been introduced should consult [USNO Historical List], which includes a list of
times when the difference between TAI and ·UTC· has changed. Because the simple types defined here do not support leap
seconds, they cannot be used to represent the final second, in ·UTC·, of any of the days containing one. If it is important, at
the application level, to track the occurrence of leap seconds, then users will need to make special arrangements for special
handling of them and of time intervals crossing them.

While calculating, property values from the dateTime 1972-12-31T00:00:00 are used to fill in for those that are absent, except
that if ·day· is absent but ·month· is not, the largest permitted day for that month is used.

Time on Timeline for Date/time Seven-property Model Datatypes

·timeOnTimeline· (dt) → decimal number

Maps a date/timeSevenPropertyModel value to the decimal number representing its position on the "time line".

Values from any one date/time datatype using the seven-component model (all except duration) are ordered the same as their
·timeOnTimeline· values, except that if one value's ·timezoneOffset· is absent and the other's is not, and using maximum and
minimum ·timezoneOffset· values for the one whose ·timezoneOffset· is actually absent changes the resulting (strict)
inequality, the original two values are incomparable.

D.2.2 Lexical Mappings

[Definition:] Each lexical representation is made up of certain date/time fragments, each of which corresponds to a particular
property of the datatype value. They are defined by the following productions.

Date/time Lexical Representation Fragments

[56] yearFrag ::= '-'? (([1-9] digit digit digit+)) | ('0' digit digit digit))

[57] monthFrag ::= ('0' [1-9]) | ('1' [0-2])

[58] dayFrag ::= ('0' [1-9]) | ([12] digit) | ('3' [01])

[59] hourFrag ::= ([01] digit) | ('2' [0-3])

[60] minuteFrag ::= [0-5] digit

[61] secondFrag ::= ([0-5] digit) ('.' digit+)?

[62] endOfDayFrag ::= '24:00:00' ('.' '0'+)?

[63] timezoneFrag ::= 'Z' | ('+' | '-') (('0' digit | '1' [0-3]) ':' minuteFrag | '14:00')

Each fragment other than timezoneFrag defines a subset of the ·lexical space· of decimal; the corresponding ·lexical mapping·
is the decimal ·lexical mapping· restricted to that subset. These fragment ·lexical mappings· are combined separately for each
date/time datatype (other than duration) to make up ·the complete lexical mapping· for that datatype. The ·yearFragValue·
mapping is used to obtain the value of the ·year· property, the ·monthFragValue· mapping is used to obtain the value of the
·month· property, etc. Each datatype which specifies some properties to be mandatorily absent also does not permit the
corresponding lexical fragments in its lexical representations.

Partial Date/time Lexical Mappings

·yearFragValue· (YR) → integer

Maps a yearFrag, part of a date/timeSevenPropertyModel's ·lexical representation·, onto an integer, presumably the ·year·
property of a date/timeSevenPropertyModel value.

·monthFragValue· (MO) → integer

Maps a monthFrag, part of a date/timeSevenPropertyModel's ·lexical representation·, onto an integer, presumably the
·month· property of a date/timeSevenPropertyModel value.

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

120 of 171 03/07/2021, 05:45

·dayFragValue· (DA) → integer

Maps a dayFrag, part of a date/timeSevenPropertyModel's ·lexical representation·, onto an integer, presumably the ·day·
property of a date/timeSevenPropertyModel value.

·hourFragValue· (HR) → integer

Maps a hourFrag, part of a date/timeSevenPropertyModel's ·lexical representation·, onto an integer, presumably the ·hour·
property of a date/timeSevenPropertyModel value.

·minuteFragValue· (MI) → integer

Maps a minuteFrag, part of a date/timeSevenPropertyModel's ·lexical representation·, onto an integer, presumably the
·minute· property of a date/timeSevenPropertyModel value.

·secondFragValue· (SE) → decimal number

Maps a secondFrag, part of a date/timeSevenPropertyModel's ·lexical representation·, onto a decimal number, presumably
the ·second· property of a date/timeSevenPropertyModel value.

·timezoneFragValue· (TZ) → integer

Maps a timezoneFrag, part of a date/timeSevenPropertyModel's ·lexical representation·, onto an integer, presumably the
·timezoneOffset· property of a date/timeSevenPropertyModel value.

Note: The redundancy between 'Z', '+00:00', and '-00:00', and the possibility of trailing fractional '0' digits for secondFrag,
are the only redundancies preventing these mappings from being one-to-one. There is no ·lexical mapping· for
endOfDayFrag; it is handled specially by the relevant ·lexical mappings·. See, e.g., ·dateTimeLexicalMap·.

The following fragment ·canonical mappings· for each value-object property are combined as appropriate to make the
·canonical mapping· for each date/time datatype (other than duration):

Partial Date/time Canonical Mappings

·yearCanonicalFragmentMap· (y) → yearFrag

Maps an integer, presumably the ·year· property of a date/timeSevenPropertyModel value, onto a yearFrag, part of a
date/timeSevenPropertyModel's ·lexical representation·.

·monthCanonicalFragmentMap· (m) → monthFrag

Maps an integer, presumably the ·month· property of a date/timeSevenPropertyModel value, onto a monthFrag, part of a
date/timeSevenPropertyModel's ·lexical representation·.

·dayCanonicalFragmentMap· (d) → dayFrag

Maps an integer, presumably the ·day· property of a date/timeSevenPropertyModel value, onto a dayFrag, part of a
date/timeSevenPropertyModel's ·lexical representation·.

·hourCanonicalFragmentMap· (h) → hourFrag

Maps an integer, presumably the ·hour· property of a date/timeSevenPropertyModel value, onto a hourFrag, part of a
date/timeSevenPropertyModel's ·lexical representation·.

·minuteCanonicalFragmentMap· (m) → minuteFrag

Maps an integer, presumably the ·minute· property of a date/timeSevenPropertyModel value, onto a minuteFrag, part of a
date/timeSevenPropertyModel's ·lexical representation·.

·secondCanonicalFragmentMap· (s) → secondFrag

Maps a decimal number, presumably the ·second· property of a date/timeSevenPropertyModel value, onto a secondFrag,
part of a date/timeSevenPropertyModel's ·lexical representation·.

·timezoneCanonicalFragmentMap· (t) → timezoneFrag

Maps an integer, presumably the ·timezoneOffset· property of a date/timeSevenPropertyModel value, onto a
timezoneFrag, part of a date/timeSevenPropertyModel's ·lexical representation·.

E Function Definitions

The more important functions and procedures defined here are summarized in the text When there is a text summary, the
name of the function in each is a "hot-link" to the same name in the other. All other links to these functions link to the complete
definition in this section.

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

121 of 171 03/07/2021, 05:45

E.1 Generic Number-related Functions

The following functions are used with various numeric and date/time datatypes.

Auxiliary Functions for Operating on Numeral Fragments

·digitValue· (d) → integer
Maps each digit to its numerical value.

Arguments:
d : matches digit

Result:
a nonnegative integer less than ten

Algorithm:
Return

0 when d = '0' ,

1 when d = '1' ,

2 when d = '2' ,

etc.

·digitSequenceValue· (S) → integer
Maps a sequence of digits to the position-weighted sum of the terms numerical values.

Arguments:
S : a finite sequence of ·literals·, each term matching digit.

Result:
a nonnegative integer

Algorithm:
Return the sum of ·digitValue·(Si) × 10length(S)−i where i runs over the domain of S.

·fractionDigitSequenceValue· (S) → integer
Maps a sequence of digits to the position-weighted sum of the terms numerical values, weighted appropriately for
fractional digits.

Arguments:
S : a finite sequence of ·literals·, each term matching digit.

Result:
a nonnegative integer

Algorithm:
Return the sum of ·digitValue·(Si) − 10−i where i runs over the domain of S.

·fractionFragValue· (N) → decimal number
Maps a fracFrag to the appropriate fractional decimal number.

Arguments:
N : matches fracFrag

Result:
a nonnegative decimal number

Algorithm:
N is necessarily the left-to-right concatenation of a finite sequence S of ·literals·, each term matching digit.
Return ·fractionDigitSequenceValue·(S).

Generic Numeral-to-Number Lexical Mappings

·unsignedNoDecimalMap· (N) → integer
Maps an unsignedNoDecimalPtNumeral to its numerical value.

Arguments:
N : matches unsignedNoDecimalPtNumeral

Result:
a nonnegative integer

Algorithm:
N is the left-to-right concatenation of a finite sequence S of ·literals·, each term matching digit.
Return ·digitSequenceValue·(S).

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

122 of 171 03/07/2021, 05:45

·noDecimalMap· (N) → integer
Maps an noDecimalPtNumeral to its numerical value.

Arguments:
N : matches noDecimalPtNumeral

Result:
an integer

Algorithm:
N necessarily consists of an optional sign('+' or '-') and then a ·literal· U that matches unsignedNoDecimalPtNumeral.
Return

−1 × ·unsignedNoDecimalMap·(U) when '-' is present, and

·unsignedNoDecimalMap·(U) otherwise.

·unsignedDecimalPtMap· (D) → decimal number
Maps an unsignedDecimalPtNumeral to its numerical value.

Arguments:
D : matches unsignedDecimalPtNumeral

Result:
a nonnegative decimal number

Algorithm:
D necessarily consists of an optional ·literal· N matching unsignedNoDecimalPtNumeral, a decimal point, and then an
optional ·literal· F matching fracFrag.
Return

·unsignedNoDecimalMap·(N) when F is not present,

·fractionFragValue·(F) when N is not present, and

·unsignedNoDecimalMap·(N) + ·fractionFragValue·(F) otherwise.

·decimalPtMap· (N) → decimal number
Maps a decimalPtNumeral to its numerical value.

Arguments:
N : matches decimalPtNumeral

Result:
a decimal number

Algorithm:
N necessarily consists of an optional sign('+' or '-') and then an instance U of unsignedDecimalPtNumeral.
Return

−·unsignedDecimalPtMap·(U) when '-' is present, and

·unsignedDecimalPtMap·(U) otherwise.

·scientificMap· (N) → decimal number
Maps a scientificNotationNumeral to its numerical value.

Arguments:
N : matches scientificNotationNumeral

Result:
a decimal number

Algorithm:
N necessarily consists of an instance C of either noDecimalPtNumeral or decimalPtNumeral, either an 'e' or an 'E', and
then an instance E of noDecimalPtNumeral.
Return

·decimalPtMap·(C) × 10 ^ ·unsignedDecimalPtMap·(E) when a '.' is present in N, and

·noDecimalMap·(C) × 10 ^ ·unsignedDecimalPtMap·(E) otherwise.

Auxiliary Functions for Producing Numeral Fragments

·digit· (i) → digit
Maps each integer between 0 and 9 to the corresponding digit.

Arguments:
i : between 0 and 9 inclusive

Result:

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

123 of 171 03/07/2021, 05:45

matches digit
Algorithm:

Return

'0' when i = 0 ,

'1' when i = 1 ,

'2' when i = 2 ,

etc.

·digitRemainderSeq· (i) → sequence of integers
Maps each nonnegative integer to a sequence of integers used by ·digitSeq· to ultimately create an
unsignedNoDecimalPtNumeral.

Arguments:
i : a nonnegative integer

Result:
sequence of nonnegative integers

Algorithm:
Return that sequence s for which

s0 = i and

sj+1 = sj ·div· 10 .

·digitSeq· (i) → sequence of integers
Maps each nonnegative integer to a sequence of integers used by ·unsignedNoDecimalPtCanonicalMap· to create an
unsignedNoDecimalPtNumeral.

Arguments:
i : a nonnegative integer

Result:
sequence of integers where each term is between 0 and 9 inclusive

Algorithm:
Return that sequence s for which sj =·digitRemainderSeq·(i)j ·mod· 10 .

·lastSignificantDigit· (s) → integer
Maps a sequence of nonnegative integers to the index of the first zero term.

Arguments:
s : a sequence of nonnegative integers

Result:
a nonnegative integer

Algorithm:
Return the smallest nonnegative integer j such that s(i)j+1 is 0.

·FractionDigitRemainderSeq· (f) → sequence of decimal numbers
Maps each nonnegative decimal number less than 1 to a sequence of decimal numbers used by ·fractionDigitSeq· to
ultimately create an unsignedNoDecimalPtNumeral.

Arguments:
f : nonnegative and less than 1

Result:
a sequence of nonnegative decimal numbers

Algorithm:
Return that sequence s for which

s0 = f − 10 , and

sj+1 = (sj ·mod· 1) − 10 .

·fractionDigitSeq· (f) → sequence of integers
Maps each nonnegative decimal number less than 1 to a sequence of integers used by
·fractionDigitsCanonicalFragmentMap· to ultimately create an unsignedNoDecimalPtNumeral.

Arguments:
f : nonnegative and less than 1

Result:
a sequence of integer;s where each term is between 0 and 9 inclusive

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

124 of 171 03/07/2021, 05:45

Algorithm:
Return that sequence s for which sj = ·FractionDigitRemainderSeq·(f)j ·div· 1 .

·fractionDigitsCanonicalFragmentMap· (f) → fracFrag
Maps each nonnegative decimal number less than 1 to a ·literal· used by ·unsignedDecimalPtCanonicalMap· to create an
unsignedDecimalPtNumeral.

Arguments:
f : nonnegative and less than 1

Result:
matches fracFrag

Algorithm:
Return ·digit·(·fractionDigitSeq·(f)0) & . . . & ·digit·(·fractionDigitSeq·(f)·lastSignificantDigit·(·FractionDigitRemainderSeq·(f))) .

Generic Number to Numeral Canonical Mappings

·unsignedNoDecimalPtCanonicalMap· (i) → unsignedNoDecimalPtNumeral
Maps a nonnegative integer to a unsignedNoDecimalPtNumeral, its ·canonical representation·.

Arguments:
i : a nonnegative integer

Result:
matches unsignedNoDecimalPtNumeral

Algorithm:
Return ·digit·(·digitSeq·(i)·lastSignificantDigit·(·digitRemainderSeq·(i))) & . . . & ·digit·(·digitSeq·(i)0) . (Note that the
concatenation is in reverse order.)

·noDecimalPtCanonicalMap· (i) → noDecimalPtNumeral
Maps an integer to a noDecimalPtNumeral, its ·canonical representation·.

Arguments:
i : an integer

Result:
matches noDecimalPtNumeral

Algorithm:
Return

'-' & ·unsignedNoDecimalPtCanonicalMap·(−i) when i is negative,

·unsignedNoDecimalPtCanonicalMap·(i) otherwise.

·unsignedDecimalPtCanonicalMap· (n) → unsignedDecimalPtNumeral
Maps a nonnegative decimal number to a unsignedDecimalPtNumeral, its ·canonical representation·.

Arguments:
n : a nonnegative decimal number

Result:
matches unsignedDecimalPtNumeral

Algorithm:
Return ·unsignedNoDecimalPtCanonicalMap·(n·div·1) & '.' & ·fractionDigitsCanonicalFragmentMap·(n·mod·1) .

·decimalPtCanonicalMap· (n) → decimalPtNumeral
Maps a decimal number to a decimalPtNumeral, its ·canonical representation·.

Arguments:
n : a decimal number

Result:
matches decimalPtNumeral

Algorithm:
Return

'-' & ·unsignedDecimalPtCanonicalMap·(−i) when i is negative,

·unsignedDecimalPtCanonicalMap·(i) otherwise.

·unsignedScientificCanonicalMap· (n) → unsignedScientificNotationNumeral
Maps a nonnegative decimal number to a unsignedScientificNotationNumeral, its ·canonical representation·.

Arguments:
n : a nonnegative decimal number

Result:

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

125 of 171 03/07/2021, 05:45

matches unsignedScientificNotationNumeral
Algorithm:

Return ·unsignedDecimalPtCanonicalMap·(n / 10log(n) ·div· 1) & 'E' & ·noDecimalPtCanonicalMap·(log(n) ·div· 1)

·scientificCanonicalMap· (n) → scientificNotationNumeral
Maps a decimal number to a scientificNotationNumeral, its ·canonical representation·.

Arguments:
n : a decimal number

Result:
matches scientificNotationNumeral

Algorithm:
Return

'-' & ·unsignedScientificCanonicalMap·(−n) when n is negative,

·unsignedScientificCanonicalMap·(i) otherwise.

For example:

123.4567 ·mod· 1 = 0.4567 and 123.4567 ·div· 1 = 123 .

·digitRemainderSeq·(123) is 123 , 12 , 1 , 0 , 0 ,

·digitSeq·(123) is 3 , 2 , 1 , 0 , 0 ,

·lastSignificantDigit·(·digitRemainderSeq·(123)) = 2 (Sequences count from 0.)

·unsignedNoDecimalPtCanonicalMap·(123) = '123'

·FractionDigitRemainderSeq·(0.4567) is 4.567 , 5.67 , 6.7 , 7 , 0 , 0 ,

·fractionDigitSeq·(0.4567) is 4 , 5 , 6 , 7 , 0 , 0 ,

·lastSignificantDigit·(·FractionDigitRemainderSeq·(0.4567)) = 3

·fractionDigitsCanonicalFragmentMap·(0.4567) = '4567'

·unsignedDecimalPtCanonicalMap·(123.4567) = '123.4567'

Lexical Mapping for Non-numerical ·Special Values· Used With Numerical Datatypes

·specialRepValue· (S) → a ·special value·
Maps the ·lexical representations· of ·special values· used with some numerical datatypes to those ·special values·.

Arguments:
S : matches numericalSpecialRep

Result:
one of positiveInfinity, negativeInfinity, or notANumber.

Algorithm:
Return

positiveInfinity when S is 'INF' or '+INF',

negativeInfinity when S is '-INF', and

notANumber when S is 'NaN'

Canonical Mapping for Non-numerical ·Special Values· Used with Numerical Datatypes

·specialRepCanonicalMap· (c) → numericalSpecialRep
Maps the ·special values· used with some numerical datatypes to their ·canonical representations·.

Arguments:
c : one of positiveInfinity, negativeInfinity, and notANumber

Result:
matches numericalSpecialRep

Algorithm:
Return

'INF' when c is positiveInfinity

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

126 of 171 03/07/2021, 05:45

'-INF' when c is negativeInfinity

'NaN' when c is notANumber

Lexical Mapping

·decimalLexicalMap· (LEX) → decimal
Maps a decimalLexicalRep onto a decimal value.

Arguments:
LEX : matches decimalLexicalRep

Result:
a decimal value

Algorithm:
Let d be a decimal value.

1. Set d to

·noDecimalMap·(LEX) when LEX is an instance of noDecimalPtNumeral, and

·decimalPtMap·(LEX) when LEX is an instance of decimalPtNumeral,

2. Return d.

Canonical Mapping

·decimalCanonicalMap· (d) → decimalLexicalRep
Maps a decimal to its ·canonical representation·, a decimalLexicalRep.

Arguments:
d : a decimal value

Result:
a ·literal· matching decimalLexicalRep

Algorithm:

1. If d is an integer, then return ·noDecimalPtCanonicalMap·(d).

2. Otherwise, return ·decimalPtCanonicalMap·(d).

Auxiliary Functions for Binary Floating-point Lexical/Canonical Mappings

·floatingPointRound· (nV, cWidth, eMin, eMax) → decimal number or ·special value·
Rounds a non-zero decimal number to the nearest floating-point value.

Arguments:
nV : an initially non-zero decimal number (may be set to zero during calculations)

cWidth : a positive integer

eMin : an integer

eMax : an integer greater than eMin
Result:

a decimal number or ·special value· (INF or −INF)
Algorithm:

Let
s be an integer initially 1,

c be a nonnegative integer, and

e be an integer.

1. Set s to −1 when nV < 0 .

2. So select e that 2cWidth × 2(e−1) ≤ |nV| < 2cWidth × 2e .

3. So select c that (c − 1) × 2e ≤ |nV | <c × 2e .

4. when eMax < e (overflow) return:

positiveInfinity when s is positive, and

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

127 of 171 03/07/2021, 05:45

negativeInfinity otherwise.

otherwise:

a. When e < eMin (underflow):

Set e = eMin

So select c that (c − 1) × 2e ≤ |nV | <c × 2e .

b. Set nV to

c × 2e when |nV | > c × 2e − 2(e−1) ;

(c − 1) × 2e when |nV | < c × 2e − 2(e−1) ;

c × 2e or (c − 1) × 2e according to whether c is even or c − 1 is even, otherwise (i.e.,
|nV | = c × 2e − 2(e−1) , the midpoint between the two values).

c. Return

s × nV when nV < 2cWidth × 2eMax,

positiveInfinity when s is positive, and

negativeInfinity otherwise.

Note: Implementers will find the algorithms of [Clinger, WD (1990)] more efficient in memory than the simple abstract
algorithm employed above.

·round· (n, k) → decimal number
Maps a decimal number to that value rounded by some power of 10.

Arguments:
n : a decimal number

k : a nonnegative integer
Result:

a decimal number
Algorithm:

Return ((n / 10k + 0.5) ·div·1) × 10k .

·floatApprox· (c, e, j) → decimal number
Maps a decimal number (c × 10e) to successive approximations.

Arguments:
c : a nonnegative integer

e : an integer

j : a nonnegative integer
Result:

a decimal number
Algorithm:

Return ·round·(c, j) × 10e

Lexical Mapping

·floatLexicalMap· (LEX) → float
Maps a floatRep onto a float value.

Arguments:
LEX : matches floatRep

Result:
a float value

Algorithm:
Let nV be a decimal number or ·special value· (INF or −INF).

Return ·specialRepValue·(LEX) when LEX is an instance of numericalSpecialRep;

otherwise (LEX is a numeral):

1. Set nV to

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

128 of 171 03/07/2021, 05:45

·noDecimalMap·(LEX) when LEX is an instance of noDecimalPtNumeral,

·decimalPtMap·(LEX) when LEX is an instance of decimalPtNumeral, and

·scientificMap·(LEX) otherwise (LEX is an instance of scientificNotationNumeral).

2. Set nV to ·floatingPointRound·(nV, 24, −149, 104) when nV is not zero. (·floatingPointRound· may
nonetheless return zero, or INF or −INF.)

3. Return:

When nV is zero:

negativeZero when the first character of LEX is '-', and

positiveZero otherwise.

nV otherwise.

Note: This specification permits the substitution of any other rounding algorithm which conforms to the requirements
of [IEEE 754-2008].

Lexical Mapping

·doubleLexicalMap· (LEX) → double
Maps a doubleRep onto a double value.

Arguments:
LEX : matches doubleRep

Result:
a double value

Algorithm:
Let nV be a decimal number or ·special value· (INF or −INF).

Return ·specialRepValue·(LEX) when LEX is an instance of numericalSpecialRep;

otherwise (LEX is a numeral):

1. Set nV to

·noDecimalMap·(LEX) when LEX is an instance of noDecimalPtNumeral,

·decimalPtMap·(LEX) when LEX is an instance of decimalPtNumeral, and

·scientificMap·(LEX) otherwise (LEX is an instance of scientificNotationNumeral).

2. Set nV to ·floatingPointRound·(nV, 53, −1074, 971) when nV is not zero. (·floatingPointRound· may
nonetheless return zero, or INF or −INF.)

3. Return:

When nV is zero:

negativeZero when the first character of LEX is '-', and

positiveZero otherwise.

nV otherwise.

Note: This specification permits the substitution of any other rounding algorithm which conforms to the requirements
of [IEEE 754-2008].

Canonical Mapping

·floatCanonicalMap· (f) → floatRep
Maps a float to its ·canonical representation·, a floatRep.

Arguments:
f : a float value

Result:
a ·literal· matching floatRep

Algorithm:

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

129 of 171 03/07/2021, 05:45

Let
l be a nonnegative integer

s be an integer intially 1,

c be a positive integer, and

e be an integer.

Return ·specialRepCanonicalMap·(f) when f is one of positiveInfinity, negativeInfinity, or notANumber;

return '0.0E0' when f is positiveZero;

return '-0.0E0' when f is negativeZero;

otherwise (f is numeric and non-zero):

1. Set s to −1 when f < 0 .

2. Let c be the smallest integer for which there exists an integer e for which |f | = c × 10e .

3. Let e be log10(|f | / c) (so that |f | = c × 10e).

4. Let l be the largest nonnegative integer for which c × 10e = ·floatingPointRound·
(·floatApprox·(c, e, l), 24, −149, 104)

5. Return ·scientificCanonicalMap·(s × ·floatApprox·(c, e, l)) .

Canonical Mapping

·doubleCanonicalMap· (f) → doubleRep
Maps a double to its ·canonical representation·, a doubleRep.

Arguments:
f : a double value

Result:
a ·literal· matching doubleRep

Algorithm:
Let

l be a nonnegative integer

s be an integer intially 1,

c be a positive integer, and

e be an integer.

Return ·specialRepCanonicalMap·(f) when f is one of positiveInfinity, negativeInfinity, or notANumber;

return '0.0E0' when f is positiveZero;

return '-0.0E0' when f is negativeZero;

otherwise (f is numeric and non-zero):

1. Set s to −1 when f < 0 .

2. Let c be the smallest integer for which there exists an integer e for which |f | = c × 10e .

3. Let e be log10(|f | / c) (so that |f | = c × 10e).

4. Let l be the largest nonnegative integer for which c × 10e = ·floatingPointRound·
(·floatApprox·(c, e, l), 53, −1074, 971)

5. Return ·scientificCanonicalMap·(s × ·floatApprox·(c, e, l)) .

E.2 Duration-related Definitions

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

130 of 171 03/07/2021, 05:45

The following functions are primarily used with the duration datatype and its derivatives.

Auxiliary duration-related Functions Operating on Representation Fragments

·duYearFragmentMap· (Y) → integer
Maps a duYearFrag to an integer, intended as part of the value of the ·months· property of a duration value.

Arguments:
Y : matches duYearFrag

Result:
a nonnegative integer

Algorithm:
Y is necessarily the letter 'Y' followed by a numeral N:
Return ·noDecimalMap·(N).

·duMonthFragmentMap· (M) → integer
Maps a duMonthFrag to an integer, intended as part of the value of the ·months· property of a duration value.

Arguments:
M : matches duYearFrag

Result:
a nonnegative integer

Algorithm:
M is necessarily the letter 'M' followed by a numeral N:
Return ·noDecimalMap·(N).

·duDayFragmentMap· (D) → integer
Maps a duDayFrag to an integer, intended as part of the value of the ·seconds· property of a duration value.

Arguments:
D : matches duDayFrag

Result:
a nonnegative integer

Algorithm:
D is necessarily the letter 'D' followed by a numeral N:
Return ·noDecimalMap·(N).

·duHourFragmentMap· (H) → integer
Maps a duHourFrag to an integer, intended as part of the value of the ·seconds· property of a duration value.

Arguments:
H : matches duHourFrag

Result:
a nonnegative integer

Algorithm:
D is necessarily the letter 'D' followed by a numeral N:
Return ·noDecimalMap·(N).

·duMinuteFragmentMap· (M) → integer
Maps a duMinuteFrag to an integer, intended as part of the value of the ·seconds· property of a duration value.

Arguments:
M : matches duMinuteFrag

Result:
a nonnegative integer

Algorithm:
M is necessarily the letter 'M' followed by a numeral N:
Return ·noDecimalMap·(N).

·duSecondFragmentMap· (S) → decimal number
Maps a duSecondFrag to a decimal number, intended as part of the value of the ·seconds· property of a duration value.

Arguments:
S : matches duSecondFrag

Result:
a nonnegative decimal number

Algorithm:
S is necessarily 'S' followed by a numeral N:
Return

·decimalPtMap·(N) when '.' occurs in N, and

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

131 of 171 03/07/2021, 05:45

·noDecimalMap·(N) otherwise.

·duYearMonthFragmentMap· (YM) → integer
Maps a duYearMonthFrag into an integer, intended as part of the ·months· property of a duration value.

Arguments:
YM : matches duYearMonthFrag

Result:
a nonnegative integer

Algorithm:
YM necessarily consists of an instance Y of duYearFrag and/or an instance M of duMonthFrag:
Let

y be ·duYearFragmentMap·(Y) (or 0 if Y is not present) and

m be ·duMonthFragmentMap·(M) (or 0 if M is not present).

Return 12 × y + m .

·duTimeFragmentMap· (T) → decimal number
Maps a duTimeFrag into a decimal number, intended as part of the ·seconds· property of a duration value.

Arguments:
T : matches duTimeFrag

Result:
a nonnegative decimal number

Algorithm:
T necessarily consists of an instance H of duHourFrag, and/or an instance M of duMinuteFrag, and/or an instance S of
duSecondFrag.
Let

h be ·duDayFragmentMap·(H) (or 0 if H is not present),

m be ·duMinuteFragmentMap·(M) (or 0 if M is not present), and

s be ·duSecondFragmentMap·(S) (or 0 if S is not present).

Return 3600 × h + 60 × m + s .

·duDayTimeFragmentMap· (DT) → decimal number
Maps a duDayTimeFrag into a decimal number, which is the potential value of the ·seconds· property of a duration value.

Arguments:
DT : matches duDayTimeFrag

Result:
a nonnegative decimal number

Algorithm:
DT necessarily consists of an instance D of duDayFrag and/or an instance T of duTimeFrag.
Let

d be ·duDayFragmentMap·(D) (or 0 if D is not present) and

t be ·duTimeFragmentMap·(T) (or 0 if T is not present).

Return 86400 × d + t .

The duration Lexical Mapping

·durationMap· (DUR) → duration
Separates the durationLexicalRep into the month part and the seconds part, then maps them into the ·months· and
·seconds· of the duration value.

Arguments:
DUR : matches durationLexicalRep

Result:
a complete duration value

Algorithm:
DUR consists of possibly a leading '-', followed by 'P' and then an instance Y of duYearMonthFrag and/or an instance D of
duDayTimeFrag:
Return a duration whose

·months· value is

0 if Y is not present,

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

132 of 171 03/07/2021, 05:45

−·duYearMonthFragmentMap·(Y) if both '-' and Y are present, and

·duYearMonthFragmentMap·(Y) otherwise.

and whose

·seconds· value is

0 if D is not present,

−·duDayTimeFragmentMap·(D) if both '-' and D are present, and

·duDayTimeFragmentMap·(D) otherwise.

The yearMonthDuration Lexical Mapping

·yearMonthDurationMap· (YM) → yearMonthDuration
Maps the lexical representation into the ·months· of a yearMonthDuration value. (A yearMonthDuration's ·seconds· is
always zero.) ·yearMonthDurationMap· is a restriction of ·durationMap·.

Arguments:
YM : matches yearMonthDurationLexicalRep

Result:
a complete yearMonthDuration value

Algorithm:
YM necessarily consists of an optional leading '-', followed by 'P' and then an instance Y of duYearMonthFrag:
Return a yearMonthDuration whose

·months· value is

−·duYearMonthFragmentMap·(Y) if '-' is present in YM and

·duYearMonthFragmentMap·(Y) otherwise, and

·seconds· value is (necessarily) 0.

The dayTimeDuration Lexical Mapping

·dayTimeDurationMap· (DT) → dayTimeDuration
Maps the lexical representation into the ·seconds· of a dayTimeDuration value. (A dayTimeDuration's ·months· is always
zero.) ·dayTimeDurationMap· is a restriction of ·durationMap·.

Arguments:
DT : a dayTimeDuration value

Result:
a complete dayTimeDuration value

Algorithm:
DT necessarily consists of possibly a leading '-', followed by 'P' and then an instance D of duDayTimeFrag:
Return a dayTimeDuration whose

·months· value is (necessarily) 0, and

·seconds· value is

−·duDayTimeFragmentMap·(D) if '-' is present in DT and

·duDayTimeFragmentMap·(D) otherwise.

Auxiliary duration-related Functions Producing Representation Fragments

·duYearMonthCanonicalFragmentMap· (ym) → duYearMonthFrag
Maps a nonnegative integer, presumably the absolute value of the ·months· of a duration value, to a duYearMonthFrag, a
fragment of a duration ·lexical representation·.

Arguments:
ym : a nonnegative integer

Result:
a ·literal· matching duYearMonthFrag

Algorithm:
Let

y be ym ·div· 12 , and

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

133 of 171 03/07/2021, 05:45

m be ym ·mod· 12 ,

Return

·unsignedNoDecimalPtCanonicalMap·(y) & 'Y' & ·unsignedNoDecimalPtCanonicalMap·(m) & 'M' when neither y nor
m is zero,

·unsignedNoDecimalPtCanonicalMap·(y) & 'Y' when y is not zero but m is, and

·unsignedNoDecimalPtCanonicalMap·(m) & 'M' when y is zero.

·duDayCanonicalFragmentMap· (d) → duDayFrag
Maps a nonnegative integer, presumably the day normalized value from the ·seconds· of a duration value, to a duDayFrag,
a fragment of a duration ·lexical representation·.

Arguments:
d : a nonnegative integer

Result:
a ·literal· matching duDayFrag

Algorithm:
Return

·unsignedNoDecimalPtCanonicalMap·(d) & 'D' when d is not zero, and

the empty string ('') when d is zero.

·duHourCanonicalFragmentMap· (h) → duHourFrag
Maps a nonnegative integer, presumably the hour normalized value from the ·seconds· of a duration value, to a
duHourFrag, a fragment of a duration ·lexical representation·.

Arguments:
h : a nonnegative integer

Result:
a ·literal· matching duHourFrag

Algorithm:
Return

·unsignedNoDecimalPtCanonicalMap·(h) & 'H' when h is not zero, and

the empty string ('') when h is zero.

·duMinuteCanonicalFragmentMap· (m) → duMinuteFrag
Maps a nonnegative integer, presumably the minute normalized value from the ·seconds· of a duration value, to a
duMinuteFrag, a fragment of a duration ·lexical representation·.

Arguments:
m : a nonnegative integer

Result:
a ·literal· matching duMinuteFrag

Algorithm:
Return

·unsignedNoDecimalPtCanonicalMap·(m) & 'M' when m is not zero, and

the empty string ('') when m is zero.

·duSecondCanonicalFragmentMap· (s) → duSecondFrag
Maps a nonnegative decimal number, presumably the second normalized value from the ·seconds· of a duration value, to
a duSecondFrag, a fragment of a duration ·lexical representation·.

Arguments:
s : a nonnegative decimal number

Result:
matches duSecondFrag

Algorithm:
Return

·unsignedNoDecimalPtCanonicalMap·(s) & 'S' when s is a non-zero integer,

·unsignedDecimalPtCanonicalMap·(s) & 'S' when s is not an integer, and

the empty string ('') when s is zero.

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

134 of 171 03/07/2021, 05:45

·duTimeCanonicalFragmentMap· (h, m, s) → duTimeFrag
Maps three nonnegative numbers, presumably the hour, minute, and second normalized values from a duration's
·seconds·, to a duTimeFrag, a fragment of a duration ·lexical representation·.

Arguments:
h : a nonnegative integer

m : a nonnegative integer

s : a nonnegative decimal number
Result:

a ·literal· matching duTimeFrag
Algorithm:

Return

'T' & ·duHourCanonicalFragmentMap·(h) & ·duMinuteCanonicalFragmentMap·(m) &
·duSecondCanonicalFragmentMap·(s) when h, m, and s are not all zero, and

the empty string ('') when all arguments are zero.

·duDayTimeCanonicalFragmentMap· (ss) → duDayTimeFrag
Maps a nonnegative decimal number, presumably the absolute value of the ·seconds· of a duration value, to a
duDayTimeFrag, a fragment of a duration ·lexical representation·.

Arguments:
ss : a nonnegative decimal number

Result:
matches duDayTimeFrag

Algorithm:
Let

d is ss ·div· 86400 ,

h is (ss ·mod· 86400) ·div· 3600 ,

m is (ss ·mod· 3600) ·div· 60 , and

s is ss ·mod· 60 ,

Return

·duDayCanonicalFragmentMap·(d) & ·duTimeCanonicalFragmentMap·(h, m, s) when ss is not zero and

'T0S' when ss is zero.

The duration Canonical Mapping

·durationCanonicalMap· (v) → durationLexicalRep
Maps a duration's property values to durationLexicalRep fragments and combines the fragments into a complete
durationLexicalRep.

Arguments:
v : a complete duration value

Result:
matches durationLexicalRep

Algorithm:
Let

m be v's ·months·,

s be v's ·seconds·, and

sgn be '-' if m or s is negative and the empty string ('') otherwise.

Return

sgn & 'P' & ·duYearMonthCanonicalFragmentMap·(| m |) & ·duDayTimeCanonicalFragmentMap·(| s |) when
neither m nor s is zero,

sgn & 'P' & ·duYearMonthCanonicalFragmentMap·(| m |) when m is not zero but s is, and

sgn & 'P' & ·duDayTimeCanonicalFragmentMap·(| s |) when m is zero.

The yearMonthDuration Canonical Mapping

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

135 of 171 03/07/2021, 05:45

·yearMonthDurationCanonicalMap· (ym) → yearMonthDurationLexicalRep
Maps a yearMonthDuration's ·months· value to a yearMonthDurationLexicalRep. (The ·seconds· value is necessarily zero
and is ignored.) ·yearMonthDurationCanonicalMap· is a restriction of ·durationCanonicalMap·.

Arguments:
ym : a complete yearMonthDuration value

Result:
matches yearMonthDurationLexicalRep

Algorithm:
Let

m be ym's ·months· and

sgn be '-' if m is negative and the empty string ('') otherwise.

Return sgn & 'P' & ·duYearMonthCanonicalFragmentMap·(| m |) .

The dayTimeDuration Canonical Mapping

·dayTimeDurationCanonicalMap· (dt) → dayTimeDurationLexicalRep
Maps a dayTimeDuration's ·seconds· value to a dayTimeDurationLexicalRep. (The ·months· value is necessarily zero and
is ignored.) ·dayTimeDurationCanonicalMap· is a restriction of ·durationCanonicalMap·.

Arguments:
dt : a complete dayTimeDuration value

Result:
matches dayTimeDurationLexicalRep

Algorithm:
Let

s be dt's ·months· and

sgn be '-' if s is negative and the empty string ('') otherwise.

Return sgn & 'P' & ·duYearMonthCanonicalFragmentMap·(| s |) .

E.3 Date/time-related Definitions
 E.3.1 Normalization of property values
 E.3.2 Auxiliary Functions
 E.3.3 Adding durations to dateTimes
 E.3.4 Time on timeline
 E.3.5 Lexical mappings
 E.3.6 Canonical Mappings

E.3.1 Normalization of property values

When adding and subtracting numbers from date/time properties, the immediate results may not conform to the limits
specified. Accordingly, the following procedures are used to "normalize" potential property values to corresponding values that
do conform to the appropriate limits. Normalization is required when dealing with time zone offset changes (as when
converting to ·UTC· from "local" values) and when adding duration values to or subtracting them from dateTime values.

Date/time Datatype Normalizing Procedures

·normalizeMonth· (yr, mo)
If month (mo) is out of range, adjust month and year (yr) accordingly; otherwise, make no change.

Arguments:
yr : an integer

mo : an integer
Algorithm:

1. Add (mo − 1) ·div· 12 to yr.

2. Set mo to (mo − 1) ·mod· 12 + 1 .

·normalizeDay· (yr, mo, da)
If month (mo) is out of range, or day (da) is out of range for the appropriate month, then adjust values accordingly,
otherwise make no change.

Arguments:
yr : an integer

mo : an integer

da : an integer

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

136 of 171 03/07/2021, 05:45

Algorithm:

1. ·normalizeMonth·(yr, mo)

2. Repeat until da is positive and not greater than ·daysInMonth·(yr, mo):

a. If da exceeds ·daysInMonth·(yr, mo) then:

i. Subtract that limit from da.

ii. Add 1 to mo.

iii. ·normalizeMonth·(yr, mo)

b. If da is not positive then:

i. Subtract 1 from mo.

ii. ·normalizeMonth·(yr, mo)

iii. Add the new upper limit from the table to da.

·normalizeMinute· (yr, mo, da, hr, mi)
Normalizes minute, hour, month, and year values to values that obey the appropriate constraints.

Arguments:
yr : an integer

mo : an integer

da : an integer

hr : an integer

mi : an integer
Algorithm:

1. Add mi ·div· 60 to hr.

2. Set mi to mi ·mod· 60 .

3. Add hr ·div· 24 to da.

4. Set hr to hr ·mod· 24 .

5. ·normalizeDay·(yr, mo, da).

·normalizeSecond· (yr, mo, da, hr, mi, se)
Normalizes second, minute, hour, month, and year values to values that obey the appropriate constraints. (This algorithm
ignores leap seconds.)

Arguments:
yr : an integer

mo : an integer

da : an integer

hr : an integer

mi : an integer

se : a decimal number
Algorithm:

1. Add se ·div· 60 to mi.

2. Set se to se ·mod· 60 .

3. ·normalizeMinute·(yr, mo, da, hr, mi).

E.3.2 Auxiliary Functions

Date/time Auxiliary Functions

·daysInMonth· (y, m) → integer
Returns the number of the last day of the month for any combination of year and month.

Arguments:

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

137 of 171 03/07/2021, 05:45

y : an ·optional· integer

m : an integer between 1 and 12
Result:

between 28 and 31 inclusive
Algorithm:

Return:

28 when m is 2 and y is not evenly divisible by 4, or is evenly divisible by 100 but not by 400, or is absent,

29 when m is 2 and y is evenly divisible by 400, or is evenly divisible by 4 but not by 100,

30 when m is 4, 6, 9, or 11,

31 otherwise (m is 1, 3, 5, 7, 8, 10, or 12)

·newDateTime· (Yr, Mo, Da, Hr, Mi, Se, Tz) → an instance of the date/timeSevenPropertyModel
Returns an instance of the date/timeSevenPropertyModel with property values as specified in the arguments. If an
argument is omitted, the corresponding property is set to absent.

Arguments:
Yr : an ·optional· integer

Mo : an ·optional· integer between 1 and 12 inclusive

Da : an ·optional· integer between 1 and 31 inclusive

Hr : an ·optional· integer between 0 and 24 inclusive

Mi : an ·optional· integer between 0 and 59 inclusive

Se : an ·optional· decimal number greater than or equal to 0 and less than 60

Tz : an ·optional· integer between −840 and 840 inclusive.
Result:
Algorithm:

Let
dt be an instance of the date/timeSevenPropertyModel

yr be Yr when Yr is not absent, otherwise 1

mo be Mowhen Mo is not absent, otherwise 1

da be Dawhen Da is not absent, otherwise 1

hr be Hrwhen Hr is not absent, otherwise 0

mi be Miwhen Mi is not absent, otherwise 0

se be Sewhen Se is not absent, otherwise 0

1. ·normalizeSecond·(yr, mo, da, hr, mi, se)

2. Set the ·year· property of dt to absent when Yr is absent, otherwise yr.

3. Set the ·month· property of dt to absent when Mo is absent, otherwise mo.

4. Set the ·day· property of dt to absent when Da is absent, otherwise da.

5. Set the ·hour· property of dt to absent when Hr is absent, otherwise hr.

6. Set the ·minute· property of dt to absent when Mi is absent, otherwise mi.

7. Set the ·second· property of dt to absent when Se is absent, otherwise se.

8. Set the ·timezoneOffset· property of dt to Tz

9. Return dt.

E.3.3 Adding durations to dateTimes

Given a dateTime S and a duration D, function ·dateTimePlusDuration· specifies how to compute a dateTime E, where E is the
end of the time period with start S and duration D i.e. E = S + D. Such computations are used, for example, to determine
whether a dateTime is within a specific time period. This algorithm can also be applied, when applications need the operation,
to the addition of durations to the datatypes date, gYearMonth, gYear, gDay and gMonth, each of which can be viewed as
denoting a set of dateTimes. In such cases, the addition is made to the first or starting dateTime in the set. Note that the

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

138 of 171 03/07/2021, 05:45

extension of this algorithm to types other than dateTime is not needed for schema-validity assessment.

Essentially, this calculation adds the ·months· and ·seconds· properties of the duration value separately to the dateTime value.
The ·months· value is added to the starting dateTime value first. If the day is out of range for the new month value, it is pinned
to be within range. Thus April 31 turns into April 30. Then the ·seconds· value is added. This latter addition can cause the year,
month, day, hour, and minute to change.

Leap seconds are ignored by the computation. All calculations use 60 seconds per minute.

Thus the addition of either PT1M or PT60S to any dateTime will always produce the same result. This is a special definition of
addition which is designed to match common practice, and—most importantly—be stable over time.

A definition that attempted to take leap-seconds into account would need to be constantly updated, and could not predict the
results of future implementation's additions. The decision to introduce a leap second in ·UTC· is the responsibility of the
[International Earth Rotation Service (IERS)]. They make periodic announcements as to when leap seconds are to be added,
but this is not known more than a year in advance. For more information on leap seconds, see [U.S. Naval Observatory Time
Service Department].

Adding duration to dateTime

·dateTimePlusDuration· (du, dt) → dateTime
Adds a duration to a dateTime value, producing another dateTime value.

Arguments:
du : a duration value

dt : a dateTime value
Result:

a dateTime value
Algorithm:

Let
yr be dt's ·year·,

mo be dt's ·month·,

da be dt's ·day·,

hr be dt's ·hour·,

mi be dt's ·minute·, and

se be dt's ·second·.

tz be dt's ·timezoneOffset·.

1. Add du's ·months· to mo.

2. ·normalizeMonth·(yr, mo). (I.e., carry any over- or underflow, adjust month.)

3. Set da to min(da, ·daysInMonth·(yr, mo)). (I.e., pin the value if necessary.)

4. Add du's ·seconds· to se.

5. ·normalizeSecond·(yr, mo, da, hr, mi, se). (I.e., carry over- or underflow of seconds up to minutes, hours, etc.)

6. Return ·newDateTime·(yr, mo, da, hr, mi, se, tz)

This algorithm may be applied to date/time types other than dateTime, by

1. For each absent property, supply the minimum legal value for that property (1 for years, months, days, 0 for hours,
minutes, seconds).

2. Call the function.

3. For each property absent in the initial value, set the corresponding property in the result value to absent.

Examples:

dateTime duration result

2000-01-12T12:13:14Z P1Y3M5DT7H10M3.3S 2001-04-17T19:23:17.3Z

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

139 of 171 03/07/2021, 05:45

2000-01 -P3M 1999-10

2000-01-12 PT33H 2000-01-13

Note that the addition defined by ·dateTimePlusDuration· differs from addition on integers or real numbers in not being
commutative. The order of addition of durations to instants is significant. For example, there are cases where:

((dateTime + duration1) + duration2) != ((dateTime + duration2) + duration1)

Example:

(2000-03-30 + P1D) + P1M = 2000-03-31 + P1M = 2000-04-30

(2000-03-30 + P1M) + P1D = 2000-04-30 + P1D = 2000-05-01

E.3.4 Time on timeline

Time on Timeline for Date/time Seven-property Model Datatypes

·timeOnTimeline· (dt) → decimal number
Maps a date/timeSevenPropertyModel value to the decimal number representing its position on the "time line".

Arguments:
dt : a date/timeSevenPropertyModel value

Result:
a decimal number

Algorithm:
Let

yr be 1971 when dt's ·year· is absent, and dt's ·year· − 1 otherwise,

mo be 12 or dt's ·month· , similarly,

da be ·daysInMonth·(yr+1, mo) − 1 or (dt's ·day·) − 1 , similarly,

hr be 0 or dt's ·hour· , similarly,

mi be 0 or dt's ·minute· , similarly, and

se be 0 or dt's ·second· , similarly.

1. Subtract ·timezoneOffset· from mi when ·timezoneOffset· is not absent.

2. (·year·)

a. Set ToTl to 31536000 × yr .

3. (Leap-year Days, ·month·, and ·day·)

a. Add 86400 × (yr ·div· 400 − yr ·div· 100 + yr ·div· 4) to ToTl.

b. Add 86400 × Summ < mo ·daysInMonth·(yr + 1, m) to ToTl

c. Add 86400 × da to ToTl.

4. (·hour·, ·minute·, and ·second·)

a. Add 3600 × hr + 60 × mi + se to ToTl.

5. Return ToTl.

E.3.5 Lexical mappings

Partial Date/time Lexical Mappings

·yearFragValue· (YR) → integer
Maps a yearFrag, part of a date/timeSevenPropertyModel's ·lexical representation·, onto an integer, presumably the ·year·
property of a date/timeSevenPropertyModel value.

Arguments:
YR : matches yearFrag

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

140 of 171 03/07/2021, 05:45

Result:
an integer

Algorithm:
Return ·noDecimalMap·(YR)

·monthFragValue· (MO) → integer
Maps a monthFrag, part of a date/timeSevenPropertyModel's ·lexical representation·, onto an integer, presumably the
·month· property of a date/timeSevenPropertyModel value.

Arguments:
MO : matches monthFrag

Result:
an integer

Algorithm:
Return ·unsignedNoDecimalMap·(MO)

·dayFragValue· (DA) → integer
Maps a dayFrag, part of a date/timeSevenPropertyModel's ·lexical representation·, onto an integer, presumably the ·day·
property of a date/timeSevenPropertyModel value.

Arguments:
DA : matches dayFrag

Result:
an integer

Algorithm:
Return ·unsignedNoDecimalMap·(DA)

·hourFragValue· (HR) → integer
Maps a hourFrag, part of a date/timeSevenPropertyModel's ·lexical representation·, onto an integer, presumably the ·hour·
property of a date/timeSevenPropertyModel value.

Arguments:
HR : matches hourFrag

Result:
an integer

Algorithm:
Return ·unsignedNoDecimalMap·(HR)

·minuteFragValue· (MI) → integer
Maps a minuteFrag, part of a date/timeSevenPropertyModel's ·lexical representation·, onto an integer, presumably the
·minute· property of a date/timeSevenPropertyModel value.

Arguments:
MI : matches minuteFrag

Result:
an integer

Algorithm:
Return ·unsignedNoDecimalMap·(MI)

·secondFragValue· (SE) → decimal number
Maps a secondFrag, part of a date/timeSevenPropertyModel's ·lexical representation·, onto a decimal number, presumably
the ·second· property of a date/timeSevenPropertyModel value.

Arguments:
SE : matches secondFrag

Result:
a decimal number

Algorithm:
Return

·unsignedNoDecimalMap·(SE) when no decimal point occurs in SE, and

·unsignedDecimalPtMap·(SE) otherwise.

·timezoneFragValue· (TZ) → integer
Maps a timezoneFrag, part of a date/timeSevenPropertyModel's ·lexical representation·, onto an integer, presumably the
·timezoneOffset· property of a date/timeSevenPropertyModel value.

Arguments:
TZ : matches timezoneFrag

Result:

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

141 of 171 03/07/2021, 05:45

an integer
Algorithm:

TZ necessarily consists of either just 'Z', or a sign ('+' or '-') followed by an instance H of hourFrag, a colon, and an
instance M of minuteFrag
Return

0 when TZ is 'Z',

−(·unsignedDecimalPtMap·(H) × 60 + ·unsignedDecimalPtMap·(M)) when the sign is '-', and

·unsignedDecimalPtMap·(H) × 60 + ·unsignedDecimalPtMap·(M) otherwise.

Note: There is no ·lexical mapping· for endOfDayFrag; it is handled specially by the relevant ·lexical mappings·. See, e.g.,
·dateTimeLexicalMap·.

Lexical Mapping

·dateTimeLexicalMap· (LEX) → dateTime
Maps a dateTimeLexicalRep to a dateTime value.

Arguments:
LEX : matches dateTimeLexicalRep

Result:
a complete dateTime value

Algorithm:
LEX necessarily includes substrings that are instances of yearFrag, monthFrag, and dayFrag (below referred to as Y, MO,
and D respectively); it also contains either instances of hourFrag, minuteFrag, and secondFrag(Y, MI, and S), or else an
instance of endOfDayFrag; finally, it may optionally contain an instance oftimezoneFrag (T).
Let tz be ·timezoneFragValue·(T) when T is present, otherwise absent.
Return

·newDateTime·(·yearFragValue·(Y), ·monthFragValue·(MO), ·dayFragValue·(D), 24, 0, 0, tz) when endOfDayFrag is
present, and

·newDateTime·(·yearFragValue·(Y), ·monthFragValue·(MO), ·dayFragValue·(D), ·hourFragValue·(H),
·minuteFragValue·(MI), ·secondFragValue·(S), tz) otherwise

Lexical Mapping

·timeLexicalMap· (LEX) → time
Maps a timeLexicalRep to a time value.

Arguments:
LEX : matches timeLexicalRep

Result:
a complete time value

Algorithm:
LEX necessarily includes either substrings that are instances of hourFrag, minuteFrag, and secondFrag, (below referred to
as H, M, and S respectively), or else an instance of endOfDayFrag; finally, it may optionally contain an instance of
timezoneFrag (T).
Let tz be ·timezoneFragValue·(T) when T is present, otherwise absent
Return

·newDateTime·(absent, absent, absent, 0, 0, 0, tz) when endOfDayFrag is present, and

·newDateTime·(absent, absent, absent, ·hourFragValue·(H), ·minuteFragValue·(MI), ·secondFragValue·(S), tz)
otherwise.

Lexical Mapping

·dateLexicalMap· (LEX) → date
Maps a dateLexicalRep to a date value.

Arguments:
LEX : matches dateLexicalRep

Result:
a complete date value

Algorithm:
LEX necessarily includes an instance Y of yearFrag, an instance M of monthFrag, and an instance D of dayFrag, hyphen-

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

142 of 171 03/07/2021, 05:45

separated and optionally followed by an instance T of timezoneFrag.
Let tz be ·timezoneFragValue·(T) when T is present, otherwise absent
Return ·newDateTime·(·yearFragValue·(Y), ·monthFragValue·(M), ·dayFragValue·(D), absent, absent, absent, tz.)

Lexical Mapping

·gYearMonthLexicalMap· (LEX) → gYearMonth
Maps a gYearMonthLexicalRep to a gYearMonth value.

Arguments:
LEX : matches gYearMonthLexicalRep

Result:
a complete gYearMonth value

Algorithm:
LEX necessarily includes an instance Y of yearFrag and an instance M of monthFrag, hyphen-separated and optionally
followed by an instance T of timezoneFrag.
Let tz be ·timezoneFragValue·(T) when T is present, otherwise absent.
Return ·newDateTime·(·yearFragValue·(Y), ·monthFragValue·(M), absent, absent, absent, absent, tz).

Lexical Mapping

·gYearLexicalMap· (LEX) → gYear
Maps a gYearLexicalRep to a gYear value.

Arguments:
LEX : matches gYearLexicalRep

Result:
a complete gYear value

Algorithm:
LEX necessarily includes an instance Y of yearFrag, optionally followed by an instance T of timezoneFrag.
Let tz be ·timezoneFragValue·(T) when T is present, otherwise absent.
Return ·newDateTime·(·yearFragValue·(Y), absent, absent, absent, absent, absent, tz).

Lexical Mapping

·gMonthDayLexicalMap· (LEX) → gMonthDay
Maps a gMonthDayLexicalRep to a gMonthDay value.

Arguments:
LEX : matches gMonthDayLexicalRep

Result:
a complete gMonthDay value

Algorithm:
LEX necessarily includes an instance M of monthFrag and an instance D of dayFrag, hyphen-separated and optionally
followed by an instance T of timezoneFrag.
Let tz be ·timezoneFragValue·(T) when T is present, otherwise absent.
Return ·newDateTime·(absent, ·monthFragValue·(M), ·dayFragValue·(D), absent, absent, absent, tz.

Lexical Mapping

·gDayLexicalMap· (LEX) → gDay
Maps a gDayLexicalRep to a gDay value.

Arguments:
LEX : matches gDayLexicalRep

Result:
a complete gDay value

Algorithm:
LEX necessarily includes an instance D of dayFrag, optionally followed by an instance T of timezoneFrag.
Let tz be ·timezoneFragValue·(T) when T is present, otherwise absent.

1. Return ·newDateTime·(gD, absent, absent, ·dayFragValue·(D), absent, absent, absent, tz).

Return ·newDateTime·(absent, absent, ·dayFragValue·(D), absent, absent, absent, tz).

Lexical Mapping

·gMonthLexicalMap· (LEX) → gMonth
Maps a gMonthLexicalRep to a gMonth value.

Arguments:

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

143 of 171 03/07/2021, 05:45

LEX : matches gMonthLexicalRep
Result:

a complete gMonth value
Algorithm:

LEX necessarily includes an instance M of monthFrag, optionally followed by an instance T of timezoneFrag.
Let tz be ·timezoneFragValue·(T) when T is present, otherwise absent.
Return ·newDateTime·(absent, ·monthFragValue·(M), absent, absent, absent, absent, tz)

E.3.6 Canonical Mappings

Auxiliary Functions for Date/time Canonical Mappings

·unsTwoDigitCanonicalFragmentMap· (i) → unsignedNoDecimalPtNumeral
Maps a nonnegative integer less than 100 onto an unsigned always-two-digit numeral.

Arguments:
i : a nonnegative integer less than 100

Result:
matches unsignedNoDecimalPtNumeral

Algorithm:
Return ·digit·(i ·div· 10) & ·digit·(i ·mod· 10)

·fourDigitCanonicalFragmentMap· (i) → noDecimalPtNumeral
Maps an integer between -10000 and 10000 onto an always-four-digit numeral.

Arguments:
i : an integer whose absolute value is less than 10000

Result:
matches noDecimalPtNumeral

Algorithm:
Return

'-' & ·unsTwoDigitCanonicalFragmentMap·(−i ·div· 100) & ·unsTwoDigitCanonicalFragmentMap·(−i ·mod· 100)
when i is negative,

·unsTwoDigitCanonicalFragmentMap·(i ·div· 100) & ·unsTwoDigitCanonicalFragmentMap·(i ·mod· 100) otherwise.

Partial Date/time Canonical Mappings

·yearCanonicalFragmentMap· (y) → yearFrag
Maps an integer, presumably the ·year· property of a date/timeSevenPropertyModel value, onto a yearFrag, part of a
date/timeSevenPropertyModel's ·lexical representation·.

Arguments:
y : an integer

Result:
matches yearFrag

Algorithm:
Return

·noDecimalPtCanonicalMap·(y) when |y| > 9999 .

·fourDigitCanonicalFragmentMap·(y) otherwise.

·monthCanonicalFragmentMap· (m) → monthFrag
Maps an integer, presumably the ·month· property of a date/timeSevenPropertyModel value, onto a monthFrag, part of a
date/timeSevenPropertyModel's ·lexical representation·.

Arguments:
m : an integer between 1 and 12 inclusive

Result:
matches monthFrag

Algorithm:
Return ·unsTwoDigitCanonicalFragmentMap·(m)

·dayCanonicalFragmentMap· (d) → dayFrag
Maps an integer, presumably the ·day· property of a date/timeSevenPropertyModel value, onto a dayFrag, part of a
date/timeSevenPropertyModel's ·lexical representation·.

Arguments:

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

144 of 171 03/07/2021, 05:45

d : an integer between 1 and 31 inclusive (may be limited further depending on associated ·year· and ·month·)
Result:

matches dayFrag
Algorithm:

Return ·unsTwoDigitCanonicalFragmentMap·(d)

·hourCanonicalFragmentMap· (h) → hourFrag
Maps an integer, presumably the ·hour· property of a date/timeSevenPropertyModel value, onto a hourFrag, part of a
date/timeSevenPropertyModel's ·lexical representation·.

Arguments:
h : an integer between 0 and 23 inclusive.

Result:
matches hourFrag

Algorithm:
Return ·unsTwoDigitCanonicalFragmentMap·(h)

·minuteCanonicalFragmentMap· (m) → minuteFrag
Maps an integer, presumably the ·minute· property of a date/timeSevenPropertyModel value, onto a minuteFrag, part of a
date/timeSevenPropertyModel's ·lexical representation·.

Arguments:
m : an integer between 0 and 59 inclusive.

Result:
matches minuteFrag

Algorithm:
Return ·unsTwoDigitCanonicalFragmentMap·(m)

·secondCanonicalFragmentMap· (s) → secondFrag
Maps a decimal number, presumably the ·second· property of a date/timeSevenPropertyModel value, onto a secondFrag,
part of a date/timeSevenPropertyModel's ·lexical representation·.

Arguments:
s : a nonnegative decimal number less than 70

Result:
matches secondFrag

Algorithm:
Return

·unsTwoDigitCanonicalFragmentMap·(s) when s is an integer, and

·unsTwoDigitCanonicalFragmentMap·(s·div·1) & '.' & ·fractionDigitsCanonicalFragmentMap·(s·mod·1) otherwise.

·timezoneCanonicalFragmentMap· (t) → timezoneFrag
Maps an integer, presumably the ·timezoneOffset· property of a date/timeSevenPropertyModel value, onto a
timezoneFrag, part of a date/timeSevenPropertyModel's ·lexical representation·.

Arguments:
t : an integer between −840 and 840 inclusive

Result:
matches timezoneFrag

Algorithm:
Return

'Z' when t is zero,

'-' & ·unsTwoDigitCanonicalFragmentMap·(−t ·div· 60) & ':' & ·unsTwoDigitCanonicalFragmentMap·(−t ·mod· 60)
when t is negative, and

'+' & ·unsTwoDigitCanonicalFragmentMap·(t ·div· 60) & ':' & ·unsTwoDigitCanonicalFragmentMap·(t ·mod· 60)
otherwise.

Canonical Mapping

·dateTimeCanonicalMap· (dt) → dateLexicalRep
Maps a dateTime value to a dateTimeLexicalRep.

Arguments:
dt : a complete dateTime value

Result:
matches dateLexicalRep

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

145 of 171 03/07/2021, 05:45

Algorithm:
Let DT be ·yearCanonicalFragmentMap·(dt's ·year·) & '-' & ·monthCanonicalFragmentMap·(dt's ·month·) & '-' &

·dayCanonicalFragmentMap·(dt's ·day·) & 'T' & ·hourCanonicalFragmentMap·(dt's ·hour·) & ':' &
·minuteCanonicalFragmentMap·(dt's ·minute·) & ':' & ·secondCanonicalFragmentMap·(dt's ·second·) .

Return

DT when dt's ·timezoneOffset· is absent, and

DT & ·timezoneCanonicalFragmentMap·(dt's ·timezoneOffset·) otherwise.

Canonical Mapping

·timeCanonicalMap· (ti) → timeLexicalRep
Maps a time value to a timeLexicalRep.

Arguments:
ti : a complete time value

Result:
matches timeLexicalRep

Algorithm:
Let T be ·hourCanonicalFragmentMap·(ti's ·hour·) & ':' & ·minuteCanonicalFragmentMap·(ti's ·minute·) & ':' &

·secondCanonicalFragmentMap·(ti's ·second·) .
Return

T when ti's ·timezoneOffset· is absent, and

T & ·timezoneCanonicalFragmentMap·(ti's ·timezoneOffset·) otherwise.

Canonical Mapping

·dateCanonicalMap· (da) → dateLexicalRep
Maps a date value to a dateLexicalRep.

Arguments:
da : a complete date value

Result:
matches dateLexicalRep

Algorithm:
Let D be ·yearCanonicalFragmentMap·(da's ·year·) & '-' & ·monthCanonicalFragmentMap·(da's ·month·) & '-' &

·dayCanonicalFragmentMap·(da's ·day·) .
Return

D when da's ·timezoneOffset· is absent, and

D & ·timezoneCanonicalFragmentMap·(da's ·timezoneOffset·) otherwise.

Canonical Mapping

·gYearMonthCanonicalMap· (ym) → gYearMonthLexicalRep
Maps a gYearMonth value to a gYearMonthLexicalRep.

Arguments:
ym : a complete gYearMonth value

Result:
matches gYearMonthLexicalRep

Algorithm:
Let YM be ·yearCanonicalFragmentMap·(ym's ·year·) & '-' & ·monthCanonicalFragmentMap·(ym's ·month·) .
Return

YM when ym's ·timezoneOffset· is absent, and

YM & ·timezoneCanonicalFragmentMap·(ym's ·timezoneOffset·) otherwise.

Canonical Mapping

·gYearCanonicalMap· (gY) → gYearLexicalRep
Maps a gYear value to a gYearLexicalRep.

Arguments:

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

146 of 171 03/07/2021, 05:45

gY : a complete gYear value
Result:

matches gYearLexicalRep
Algorithm:

Return

·yearCanonicalFragmentMap·(gY's ·year·) when gY's ·timezoneOffset· is absent, and

·yearCanonicalFragmentMap·(gY's ·year·) & ·timezoneCanonicalFragmentMap·(gY's ·timezoneOffset·) otherwise.

Canonical Mapping

·gMonthDayCanonicalMap· (md) → gMonthDayLexicalRep
Maps a gMonthDay value to a gMonthDayLexicalRep.

Arguments:
md : a complete gMonthDay value

Result:
matches gMonthDayLexicalRep

Algorithm:
Let MD be '--' & ·monthCanonicalFragmentMap·(md's ·month·) & '-' & ·dayCanonicalFragmentMap·(md's ·day·) .
Return

MD when md's ·timezoneOffset· is absent, and

MD & ·timezoneCanonicalFragmentMap·(md's ·timezoneOffset·) otherwise.

Canonical Mapping

·gDayCanonicalMap· (gD) → gDayLexicalRep
Maps a gDay value to a gDayLexicalRep.

Arguments:
gD : a complete gDay value

Result:
matches gDayLexicalRep

Algorithm:
Return

'---' & ·dayCanonicalFragmentMap·(gD's ·day·) when gD's ·timezoneOffset· is absent, and

'---' & ·dayCanonicalFragmentMap·(gD's ·day·) & ·timezoneCanonicalFragmentMap·(gD's ·timezoneOffset·)
otherwise.

Canonical Mapping

·gMonthCanonicalMap· (gM) → gMonthLexicalRep
Maps a gMonth value to a gMonthLexicalRep.

Arguments:
gM : a complete gMonth value

Result:
matches gMonthLexicalRep

Algorithm:
Return

'--' & ·monthCanonicalFragmentMap·(gM's ·day·) when gM's ·timezoneOffset· is absent, and

'--' & ·monthCanonicalFragmentMap·(gM's ·day·) & ·timezoneCanonicalFragmentMap·(gM's ·timezoneOffset·)
otherwise.

E.4 Lexical and Canonical Mappings for Other Datatypes

The following functions are used with various datatypes neither numeric nor date/time related.

Lexical Mapping

·stringLexicalMap· (LEX) → string

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

147 of 171 03/07/2021, 05:45

Maps a ·literal· matching the stringRep production to a string value.

Arguments:
LEX : a ·literal· matching stringRep

Result:
A string value

Algorithm:
Return LEX. (The function is the identity function on the domain.)

Lexical Mapping

·booleanLexicalMap· (LEX) → boolean
Maps a ·literal· matching the booleanRep production to a boolean value.

Arguments:
LEX : a ·literal· matching booleanRep

Result:
A boolean value

Algorithm:
Return

true when LEX is 'true' or '1' , and

false otherwise (LEX is 'false' or '0').

Canonical Mapping

·stringCanonicalMap· (s) → stringRep
Maps a string value to a stringRep.

Arguments:
s : a string value

Result:
matches stringRep

Algorithm:
Return s. (The function is the identity function on the domain.)

Canonical Mapping

·booleanCanonicalMap· (b) → booleanRep
Maps a boolean value to a booleanRep.

Arguments:
b : a boolean value

Result:
matches booleanRep

Algorithm:
Return

'true' when b is true, and

'false' otherwise (b is false).

E.4.1 Lexical and canonical mappings for hexBinary

The ·lexical mapping· for hexBinary maps each pair of hexadecimal digits to an octet, in the conventional way:

Lexical Mapping for hexBinary

·hexBinaryMap· (LEX) → hexBinary
Maps a ·literal· matching the hexBinary production to a sequence of octets in the form of a hexBinary value.

Arguments:
LEX : a ·literal· matching hexBinary

Result:
A sequence of binary octets in the form of a hexBinary value

Algorithm:
LEX necessarily includes a sequence of zero or more substrings matching the hexOctet production.
Let o be the sequence of octets formed by applying ·hexOctetMap· to each hexOctet in LEX, in order, and concatenating

the results.

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

148 of 171 03/07/2021, 05:45

Return o.

The auxiliary functions ·hexOctetMap· and ·hexDigitMap· are used by ·hexBinaryMap·.

Mappings for hexadecimal digits

·hexOctetMap· (LEX) → octet
Maps a ·literal· matching the hexOctet production to a single octet.

Arguments:
LEX : a ·literal· matching hexOctet

Result:
A single binary octet

Algorithm:
LEX necessarily includes exactly two hexadecimal digits.
Let d0 be the first hexadecimal digit in LEX. Let d1 be the second hexadecimal digit in LEX.
Return the octet whose four high-order bits are ·hexDigitMap·(d0) and whose four low-order bits are ·hexDigitMap·(d1).

·hexDigitMap· (d) → a bit-sequence of length four
Maps a hexadecimal digit (a character matching the hexDigit production) to a sequence of four binary digits.

Arguments:
d : a hexadecimal digit

Result:
a sequence of four binary digits

Algorithm:
Return

0000 when d = '0',

0001 when d = '1',

0010 when d = '2',

0011 when d = '3',

...

1110 when d = 'E' or 'e',

1111 when d = 'F' or 'f'.

The ·canonical mapping· for hexBinary uses only the uppercase forms of A-F.

Canonical Mapping for hexBinary

·hexBinaryCanonical· (o) → hexBinary
Maps a hexBinary value to a literal matching the hexBinary production.

Arguments:
o : a hexBinary value

Result:
matches hexBinary

Algorithm:
Let h be the sequence of literals formed by applying ·hexOctetCanonical· to each octet in o, in order, and concatenating

the results.
Return h.

Auxiliary procedures for canonical mapping of hexBinary

·hexOctetCanonical· (o) → hexOctet
Maps a binary octet to a literal matching the hexOctet production.

Arguments:
o : a binary octet

Result:
matches hexOctet

Algorithm:
Let lo be the four low-order bits of o, and hi be the four high-order bits.
Return ·hexDigitCanonical·(hi) & ·hexDigitCanonical·(lo).

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

149 of 171 03/07/2021, 05:45

·hexDigitCanonical· (d) → hexDigit
Maps a four-bit sequence to a hexadecimal digit (a literal matching the hexDigit production).

Arguments:
d : a sequence of four binary digits

Result:
matches hexDigit

Algorithm:
Return

'0' when d = 0000,

'1' when d = 0001,

'2' when d = 0010,

'3' when d = 0011,

...

'E' when d = 1110,

'F' when d = 1111.

F Datatypes and Facets

F.1 Fundamental Facets

The following table shows the values of the fundamental facets for each ·built-in· datatype.

Datatype ordered bounded cardinality numeric

primitive

string false false countably infinite false

boolean false false finite false

float partial true finite true

double partial true finite true

decimal total false countably infinite true

duration partial false countably infinite false

dateTime partial false countably infinite false

time partial false countably infinite false

date partial false countably infinite false

gYearMonth partial false countably infinite false

gYear partial false countably infinite false

gMonthDay partial false countably infinite false

gDay partial false countably infinite false

gMonth partial false countably infinite false

hexBinary false false countably infinite false

base64Binary false false countably infinite false

anyURI false false countably infinite false

QName false false countably infinite false

NOTATION false false countably infinite false

non-primitive

normalizedString false false countably infinite false

token false false countably infinite false

language false false countably infinite false

IDREFS false false countably infinite false

ENTITIES false false countably infinite false

NMTOKEN false false countably infinite false

NMTOKENS false false countably infinite false

Name false false countably infinite false

NCName false false countably infinite false

ID false false countably infinite false

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

150 of 171 03/07/2021, 05:45

IDREF false false countably infinite false

ENTITY false false countably infinite false

integer total false countably infinite true

nonPositiveInteger total false countably infinite true

negativeInteger total false countably infinite true

long total true finite true

int total true finite true

short total true finite true

byte total true finite true

nonNegativeInteger total false countably infinite true

unsignedLong total true finite true

unsignedInt total true finite true

unsignedShort total true finite true

unsignedByte total true finite true

positiveInteger total false countably infinite true

yearMonthDuration partial false countably infinite false

dayTimeDuration partial false countably infinite false

dateTimeStamp partial false countably infinite false

G Regular Expressions

A ·regular expression· R is a sequence of characters that denote a set of strings L(R). When used to constrain a ·lexical
space·, a regular expression R asserts that only strings in L(R) are valid ·literals· for values of that type.

Note: Unlike some popular regular expression languages (including those defined by Perl and standard Unix utilities), the
regular expression language defined here implicitly anchors all regular expressions at the head and tail, as the most
common use of regular expressions in ·pattern· is to match entire ·literals·. For example, a datatype ·derived· from string
such that all values must begin with the character 'A' (#x41) and end with the character 'Z' (#x5a) would be defined as
follows:

<simpleType name='myString'>
 <restriction base='string'>
 <pattern value='A.*Z'/>
 </restriction>
</simpleType>

In regular expression languages that are not implicitly anchored at the head and tail, it is customary to write the equivalent
regular expression as:

^A.*Z$

where '^' anchors the pattern at the head and '$' anchors at the tail.

In those rare cases where an unanchored match is desired, including '.*' at the beginning and ending of the regular
expression will achieve the desired results. For example, a datatype ·derived· from string such that all values must contain
at least 3 consecutive 'A' (#x41) characters somewhere within the value could be defined as follows:

<simpleType name='myString'>
 <restriction base='string'>
 <pattern value='.*AAA.*'/>
 </restriction>
</simpleType>

G.1 Regular expressions and branches

[Definition:] A regular expression is composed from zero or more ·branches·, separated by '|' characters.

Regular Expression

[64] regExp ::= branch ('|' branch)*

For all ·branches· S, and for all ·regular expressions· T,
valid ·regular expressions· R are:

Denoting the set of strings L(R) containing:

(empty string) just the empty string

S all strings in L(S)

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

151 of 171 03/07/2021, 05:45

For all ·branches· S, and for all ·regular expressions· T,
valid ·regular expressions· R are:

Denoting the set of strings L(R) containing:

S |T all strings in L(S) and all strings in L(T)

[Definition:] A branch consists of zero or more ·pieces·, concatenated together.

Branch

[65] branch ::= piece*

For all ·pieces· S, and for all ·branches· T, valid
·branches· R are:

Denoting the set of strings L(R) containing:

S all strings in L(S)

ST all strings st with s in L(S) and t in L(T)

G.2 Pieces, atoms, quantifiers

[Definition:] A piece is an ·atom·, possibly followed by a ·quantifier·.

Piece

[66] piece ::= atom quantifier?

For all ·atoms· S and non-negative integers n, m such that
n ≤ m, valid ·pieces· R are:

Denoting the set of strings L(R) containing:

S all strings in L(S)

S ? the empty string, and all strings in L(S)

S *
all strings in L(S ?) and all strings st with s in L(S *) and t in
L(S) (all concatenations of zero or more strings from L(S))

S +
all strings st with s in L(S) and t in L(S *) (all concatenations

of one or more strings from L(S))

S {n,m}

all strings st with s in L(S) and t in L(S {n−1,m−1}) (all
concatenations of at least n, and at most m, strings from

L(S))

S {n}
all strings in L(S{n,n}) (all concatenations of exactly n strings

from L(S))

S {n,}
all strings in L(S{n} S *) (all concatenations of at least n

strings from L(S))

S {0,m}
all strings st with s in L(S ?) and t in L(S {0,m−1}). (all

concatenations of at most m strings from L(S))

S {0,0} only the empty string

Note: The regular expression language in the Perl Programming Language [Perl] does not include a quantifier of the form
S {,m} , since it is logically equivalent to S {0,m} . We have, therefore, left this logical possibility out of the regular
expression language defined by this specification.

[Definition:] A quantifier is one of '?', '*', or '+', or a string of the form {n,m} or {n,} , which have the meanings defined in
the table above.

Quantifier

[67] quantifier ::= [?*+] | ('{' quantity '}')

[68] quantity ::= quantRange | quantMin | QuantExact

[69] quantRange ::= QuantExact ',' QuantExact

[70] quantMin ::= QuantExact ','

[71] QuantExact ::= [0-9]+

[Definition:] An atom is either a ·normal character·, a ·character class·, or a parenthesized ·regular expression·.

Atom

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

152 of 171 03/07/2021, 05:45

[72] atom ::= NormalChar | charClass | ('(' regExp ')')

For all ·normal characters· c, ·character classes· C, and
·regular expressions· S, valid ·atoms· R are:

Denoting the set of strings L(R) containing:

c the single string consisting only of c

C all strings in L(C)

(S) L(S)

G.3 Characters and metacharacters

[Definition:] A metacharacter is either '.', '\', '?', '*', '+', '{', '}', '(', ')', '|', '[', or ']'. These characters have special meanings in
·regular expressions·, but can be escaped to form ·atoms· that denote the sets of strings containing only themselves, i.e., an
escaped metacharacter behaves like a ·normal character·.

[Definition:] A normal character is any XML character that is not a ·metacharacter·. In ·regular expressions·, a normal
character is an ·atom· that denotes the singleton set of strings containing only itself.

Normal Character

[73] NormalChar ::= [^.\?*+{}()|#x5B#x5D] /* N.B.: #x5B = '[', #x5D = ']' */

G.4 Character Classes
 G.4.1 Character class expressions
 G.4.2 Character Class Escapes
 G.4.2.1 Single-character escapes
 G.4.2.2 Category escapes
 G.4.2.3 Block escapes
 G.4.2.4 Unrecognized category escapes
 G.4.2.5 Multi-character escapes

[Definition:] A character class is an ·atom· R that identifies a set of characters C(R). The set of strings L(R). denoted by a
character class R contains one single-character string "c" for each character c in C(R).

Character Class

[74] charClass ::= SingleCharEsc | charClassEsc | charClassExpr | WildcardEsc

A character class is either a ·single-character escape· or a ·character class escape· or a ·character class expression· or a
·wildcard character·.

Note: The rules for which characters must be escaped and which can represent themselves are different when inside a
·character class expression·; some ·normal characters· must be escaped and some ·metacharacters· need not be.

G.4.1 Character class expressions

[Definition:] A character class expression (charClassExpr) is a ·character group· surrounded by '[' and ']' characters. For all
character groups G, [G] is a valid character class expression, identifying the set of characters C([G]) = C(G).

Character Class Expression

[75] charClassExpr ::= '[' charGroup ']'

[Definition:] A character group (charGroup) starts with either a ·positive character group· or a ·negative character group·,
and is optionally followed by a subtraction operator '-' and a further ·character class expression·. [Definition:] A ·character
group· that contains a subtraction operator is referred to as a character class subtraction.

Character Group

[76] charGroup ::= (posCharGroup | negCharGroup) ('-' charClassExpr)?

If the first character in a charGroup is '^', this is taken as indicating that the charGroup starts with a negCharGroup. A
posCharGroup can itself start with '^' but only when it appears within a negCharGroup, that is, when the '^' is preceded by
another '^'.

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

153 of 171 03/07/2021, 05:45

Note: For example, the string '[^X]' is ambiguous according the grammar rules, denoting either a character class
consisting of a negative character group with 'X' as a member, or a positive character class with 'X' and '^' as members.
The normative prose rule just given requires that the first interpretation be taken.

The string '[^]' is unambiguous: the grammar recognizes it as a character class expression containing a positive character
group containing just the character '^'. But the grammatical derivation of the string violates the rule just given, so the string
'[^]' ���� ��� be accepted as a regular expression.

A '-' character is recognized as a subtraction operator (and hence, as terminating the posCharGroup or negCharGroup) if it is
immediately followed by a '[' character.

For any ·positive character group· or ·negative character group· G, and any ·character class expression· C, G - C is a valid
·character group·, identifying the set of all characters in C(G) that are not in C(C).

[Definition:] A positive character group consists of one or more ·character group parts·, concatenated together. The set of
characters identified by a positive character group is the union of all of the sets identified by its constituent ·character group
parts·.

Positive Character Group

[77] posCharGroup ::= (charGroupPart)+

For all ·character ranges· R, all ·character class escapes·
E, and all ·positive character groups· P, valid ·positive

charater groups· G are:
Identifying the set of characters C(G) containing:

R all characters in C(R)

E all characters in C(E)

RP all characters in C(R) and all characters in C(P)

EP all characters in C(E) and all characters in C(P)

[Definition:] A negative character group (negCharGroup) consists of a '^' character followed by a ·positive character group·.
The set of characters identified by a negative character group C(^P) is the set of all characters that are not in C(P).

Negative Character Group

[78] negCharGroup ::= '^' posCharGroup

[Definition:] A character group part (charGroupPart) is any of: a single unescaped character (SingleCharNoEsc), a single
escaped character (SingleCharEsc), a character class escape (charClassEsc), or a character range (charRange).

Character Group Part

[79] charGroupPart ::= singleChar | charRange | charClassEsc

[80] singleChar ::= SingleCharEsc | SingleCharNoEsc

If a charGroupPart starts with a singleChar and this is immediately followed by a hyphen, then the following rules apply.

1. If the hyphen is immediately followed by '[', then the hyphen is not part of the charGroupPart: instead, it is recognized as
a character-class subtraction operator.

2. If the hyphen is immediately followed by ']', then the hyphen is recognized as a singleChar and is part of the
charGroupPart.

3. If the hyphen is immediately followed by '-[', then the hyphen is recognized as a singleChar and is part of the
charGroupPart.

4. Otherwise, the hyphen ���� be immediately followed by some singleChar other than a hyphen. In this case the hyphen is
not part of the charGroupPart; instead it is recognized, together with the immediately preceding and following instances of
singleChar, as a charRange.

5. If the hyphen is followed by any other character sequence, then the string in which it occurs is not recognized as a regular
expression.

It is an error if either of the two singleChars in a charRange is a SingleCharNoEsc comprising an unescaped hyphen.

Note: The rule just given resolves what would otherwise be the ambiguous interpretation of some strings, e.g. '[a-k-z]'; it
also constrains regular expressions in ways not expressed in the grammar. For example, the rule (not the grammar)
excludes the string '[--z]' from the regular expression language defined here.

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

154 of 171 03/07/2021, 05:45

[Definition:] A character range R identifies a set of characters C(R) with UCS code points in a specified range.

Character Range

[81] charRange ::= singleChar '-' singleChar

A ·character range· in the form s-e identifies the set of characters with UCS code points greater than or equal to the code
point of s, but not greater than the code point of e.

Single Unescaped Character

[82] SingleCharNoEsc ::= [^\#x5B#x5D] /* N.B.: #x5B = '[', #x5D = ']' */

A single unescaped character (SingleCharNoEsc) is any character except '[' or ']'. There are special rules, described earlier,
that constrain the use of the characters '-' and '^' in order to disambiguate the syntax.

A single unescaped character identifies the singleton set of characters containing that character alone.

A single escaped character (SingleCharEsc), when used within a character group, identifies the singleton set of characters
containing the character denoted by the escape (see Character Class Escapes (§G.4.2)).

G.4.2 Character Class Escapes

[Definition:] A character class escape is a short sequence of characters that identifies a predefined character class. The
valid character class escapes are the ·multi-character escapes·, and the ·category escapes· (including the ·block escapes·).

Character Class Escape

[83] charClassEsc ::= (MultiCharEsc | catEsc | complEsc)

G.4.2.1 Single-character escapes

Closely related to the character-class escapes are the single-character escapes. [Definition:] A single-character escape
identifies a set containing only one character—usually because that character is difficult or impossible to write directly into a
·regular expression·.

Single Character Escape

[84] SingleCharEsc ::= '\' [nrt\|.?*+(){}#x2D#x5B#x5D#x5E] /* N.B.: #x2D = '-', #x5B = '[', #x5D = ']', #x5E = '^' */

The valid ·single character escapes· R are: Identifying the set of characters containing:
\n the newline character (#xA)
\r the return character (#xD)
\t the tab character (#x9)
\\ \

\| |

\. .

\- -

\^ ^

\? ?

* *

\+ +

\{ {

\} }

\((

\))

\[[

\]]

G.4.2.2 Category escapes

[Definition:] [Unicode Database] specifies a number of possible values for the "General Category" property and provides
mappings from code points to specific character properties. The set containing all characters that have property X can be

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

155 of 171 03/07/2021, 05:45

identified with a category escape \p{X} (using a lower-case 'p'). The complement of this set is specified with the category
escape \P{X} (using an upper-case 'P'). For all X, if X is a recognized character-property code, then [\P{X}] = [^\p{X}].

Category Escape

[85] catEsc ::= '\p{' charProp '}'

[86] complEsc ::= '\P{' charProp '}'

[87] charProp ::= IsCategory | IsBlock

[Unicode Database] is subject to future revision. For example, the mapping from code points to character properties might be
updated. All ·minimally conforming· processors ���� support the character properties defined in the version of [Unicode
Database] cited in the normative references (Normative (§K.1)) or in some later version of the Unicode database.
Implementors are encouraged to support the character properties defined in any later versions. When the implementation
supports multiple versions of the Unicode database, and they differ in salient respects (e.g. different properties are assigned to
the same character in different versions of the database), then it is ·implementation-defined· which set of property definitions is
used for any given assessment episode.

Note: In order to benefit from continuing work on the Unicode database, a conforming implementation might by default use
the latest supported version of the character properties. In order to maximize consistency with other implementations of
this specification, however, an implementation might choose to provide ·user options· to specify the use of the version of
the database cited in the normative references. The PropertyAliases.txt and PropertyValueAliases.txt files of the
Unicode database may be helpful to implementors in this connection.

For convenience, the following table lists the values of the "General Category" property in the version of [Unicode Database]
cited in the normative references (Normative (§K.1)). The properties with single-character names are not defined in [Unicode
Database]. The value of a single-character property is the union of the values of all the two-character properties whose first
character is the character in question. For example, for N, the union of Nd, Nl and No.

Note: As of this publication the Java regex library does not include Cn in its definition of C, so that definition cannot be used
without modification in conformant implementations.

Category Property Meaning

Letters

L All Letters

Lu uppercase

Ll lowercase

Lt titlecase

Lm modifier

Lo other

Marks

M All Marks

Mn nonspacing

Mc spacing combining

Me enclosing

Numbers

N All Numbers

Nd decimal digit

Nl letter

No other

Punctuation

P All Punctuation

Pc connector

Pd dash

Ps open

Pe close

Pi initial quote (may behave like Ps or Pe depending on usage)

Pf final quote (may behave like Ps or Pe depending on usage)

Po other

Separators

Z All Separators

Zs space

Zl line

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

156 of 171 03/07/2021, 05:45

Zp paragraph

Symbols

S All Symbols

Sm math

Sc currency

Sk modifier

So other

Other

C All Others

Cc control

Cf format

Co private use

Cn not assigned

Categories

[88] IsCategory ::= Letters | Marks | Numbers | Punctuation | Separators | Symbols | Others

[89] Letters ::= 'L' [ultmo]?

[90] Marks ::= 'M' [nce]?

[91] Numbers ::= 'N' [dlo]?

[92] Punctuation ::= 'P' [cdseifo]?

[93] Separators ::= 'Z' [slp]?

[94] Symbols ::= 'S' [mcko]?

[95] Others ::= 'C' [cfon]?

Note: The properties mentioned above exclude the Cs property. The Cs property identifies "surrogate" characters, which
do not occur at the level of the "character abstraction" that XML instance documents operate on.

G.4.2.3 Block escapes

[Unicode Database] groups the code points of the Universal Character Set (UCS) into a number of blocks such as Basic Latin
(i.e., ASCII), Latin-1 Supplement, Hangul Jamo, CJK Compatibility, etc. The block-escape construct allows regular expressions
to refer to sets of characters by the name of the block in which they appear, using a ·normalized block name·.

[Definition:] For any Unicode block, the normalized block name of that block is the string of characters formed by stripping
out white space and underbar characters from the block name as given in [Unicode Database], while retaining hyphens and
preserving case distinctions.

[Definition:] A block escape expression denotes the set of characters in a given Unicode block. For any Unicode block B,
with ·normalized block name· X, the set containing all characters defined in block B can be identified with the block escape
\p{IsX} (using lower-case 'p'). The complement of this set is denoted by the block escape \P{IsX} (using upper-case 'P'). For
all X, if X is a normalized block name recognized by the processor, then [\P{IsX}] = [^\p{IsX}].

Block Escape

[96] IsBlock ::= 'Is' [a-zA-Z0-9#x2D]+ /* N.B.: #x2D = '-' */

·block escape·\p{IsBasicLatin}

Note: Current versions of the Unicode database recommend that whenever block names are being matched hyphens,
underbars, and white space should be dropped and letters folded to a single case, so both the string 'BasicLatin' and the
string '-- basic LATIN --' will match the block name "Basic Latin".

The handling of block names in block escapes differs from this behavior in two ways. First, the normalized block names
defined in this specification do not suppress hyphens in the Unicode block names and do not level case distinctions. The
normalized form of the block name 'Latin-1 Supplement', for example, is thus 'Latin-1Supplement', not 'latin1supplement'
or 'LATIN1SUPPLEMENT'. Second, XSD processors are not required to perform any normalization at all upon the block name
as given in the ·block escape·, so '\p{Latin-1Supplement}' will be recognized as a reference to the Latin-1 Supplement
block, but '\p{Is Latin-1 supplement}' will not.

[Unicode Database] has been revised since XSD 1.0 was published, and is subject to future revision. In particular, the grouping
of code points into blocks has changed, and may change again. All ·minimally conforming· processors ���� support the blocks
defined in the version of [Unicode Database] cited in the normative references (Normative (§K.1)) or in some later version of

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

157 of 171 03/07/2021, 05:45

the Unicode database. Implementors are encouraged to support the blocks defined in earlier and/or later versions of the
Unicode Standard. When the implementation supports multiple versions of the Unicode database, and they differ in salient
respects (e.g. different characters are assigned to a given block in different versions of the database), then it is
·implementation-defined· which set of block definitions is used for any given assessment episode.

In particular, the version of [Unicode Database] referenced in XSD 1.0 (namely, Unicode 3.1) contained a number of blocks
which have been renamed in later versions of the database Since the older block names may appear in regular expressions
within XSD 1.0 schemas, implementors are encouraged to support the superseded block names in XSD 1.1 processors for
compatibility, either by default or ·at user option·. At the time this document was prepared, block names from Unicode 3.1
known to have been superseded in this way included:

#x0370 - #x03FF: Greek

#x20D0 - #x20FF: CombiningMarksforSymbols

#xE000 - #xF8FF: PrivateUse

#xF0000 - #xFFFFD: PrivateUse

#x100000 - #x10FFFD: PrivateUse

A tabulation of normalized block names for Unicode 2.0.0 and later is given in [Unicode block names].

For the treatment of regular expressions containing unrecognized Unicode block names, see Unrecognized category escapes
(§G.4.2.4).

G.4.2.4 Unrecognized category escapes

A string of the form "\p{S}" constitutes a catEsc (category escape), and similarly a string of the form "\P{S}" constitutes a
complEsc (category-complement escape) only if the string S matches either IsCategory or IsBlock.

Note: If an unknown string of characters is used in a category escape instead of a known character category code or a
string matching the IsBlock production, the resulting string will (normally) not match the regExp production and thus not be
a regular expression as defined in this specification. If the non-regExp string occurs where a regular expression is
required, the schema document will be in ·error·.

Any string of hyphens, digits, and Basic Latin characters beginning with 'Is' will match the non-terminal IsBlock and thus be
allowed in a regular expression. Most of these strings, however, will not denote any Unicode block. Processors ������ issue a
warning if they encounter a regular expression using a block name they do not recognize. Processors ��� ·at user option· treat
unrecognized block names as ·errors· in the schema.

Note: Treating unrecognized block names as errors increases the likelihood that errors in spelling the block name will be
detected and can be helpful in checking the correctness of schema documents. However, it also decreases the portability
of schema documents among processors supporting different versions of [Unicode Database]; it is for this reason that
processors are allowed to treat unrecognized block names as errors only when the user has explicitly requested this
behavior.

If a string "IsX" matches the non-terminal IsBlock but X is not a recognized block name, then the expressions "\p{IsX}" and
"\P{IsX}" each denote the set of all characters. Processors ��� ·at user option· treat both "\p{IsX}" and "\P{IsX}" as denoting
the empty set, instead of the set of all characters.

Note: The meaning defined for a block escape with an unrecognized block name makes it synonymous with the regular
expression '.|[\n\r]'. A processor which does not recognize the block name will thus not enforce the constraint that the
characters matched are in, or are not in, the block in question. Any string which satisfies the regular expression as written
will be accepted, but not all strings accepted will actually satisfy the expression as written: some strings which do not
satisfy the expression as written will also be accepted. So some invalid input will be wrongly identified as valid.

If (at ·user option·) the expressions are treated as denoting the empty set, then the converse is true: any string which fails
to satisfy the expression as written will be rejected, but not all strings rejected by the processor will actually have failed to
satisfy the expression as written. So some valid input will be wrongly identified as invalid.

Which behavior is preferable in concrete circumstances depends on the relative cost of failure to accept valid input (false
negatives) and failure to reject invalid input (false positives). It is for this reason that processors are allowed to provide
·user options· to control the behavior. The principle of being liberal in accepting input (often called Postel's Law) suggests
that the default behavior should be to accept strings not known to be invalid, rather than the converse; it is for this reason
that block escapes with unknown block names should be treated as matching any character unless the user explicitly
requests the alternative behavior.

G.4.2.5 Multi-character escapes

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

158 of 171 03/07/2021, 05:45

[Definition:] A multi-character escape provides a simple way to identify any of a commonly used set of characters:
[Definition:] The wildcard character is a metacharacter which matches almost any single character:

Multi-Character Escape

[97] MultiCharEsc ::= '\' [sSiIcCdDwW]

[98] WildcardEsc ::= '.'

Character sequence Equivalent ·character class·

. [^\n\r]

\s [#x20\t\n\r]

\S [^\s]

\i the set of initial name characters, those
·matched· by NameStartChar in [XML]

\I [^\i]

\c the set of name characters, those
·matched· by NameChar

\C [^\c]

\d \p{Nd}

\D [^\d]

\w

[#x0000-#x10FFFF]-[\p{P}\p{Z}\p{C}] (all
characters except the set of

"punctuation", "separator" and "other"
characters)

\W [^\w]

Note: The ·regular expression· language defined here does not attempt to provide a general solution to "regular
expressions" over UCS character sequences. In particular, it does not easily provide for matching sequences of base
characters and combining marks. The language is targeted at support of "Level 1" features as defined in [Unicode Regular
Expression Guidelines]. It is hoped that future versions of this specification will provide support for "Level 2" features.

H Implementation-defined and implementation-dependent features (normative)

H.1 Implementation-defined features

The following features in this specification are ·implementation-defined·. Any software which claims to conform to this
specification (or to the specification of any host language which embeds XSD 1.1: Datatypes) ���� describe how these
choices have been exercised, in documentation which accompanies any conformance claim.

1. For the datatypes which depend on [XML] or [Namespaces in XML], it is ·implementation-defined· whether a conforming
processor takes the relevant definitions from [XML] and [Namespaces in XML], or from [XML 1.0] and [Namespaces in
XML 1.0]. Implementations ��� support either the form of these datatypes based on version 1.0 of those specifications,
or the form based on version 1.1, or both.

2. For the datatypes with infinite ·value spaces·, it is ·implementation-defined· whether conforming processors set a limit on
the size of the values supported. If such limits are set, they ���� be documented, and the limits ���� be equal to, or
exceed, the minimal limits specified in Partial Implementation of Infinite Datatypes (§5.4). .

3. It is ·implementation-defined· whether ·primitive· datatypes other than those defined in this specification are supported.

For each ·implementation-defined· datatype, a Simple Type Definition ���� be specified which conforms to the rules
given in Built-in Simple Type Definitions (§4.1.6).

In addition, the following information ���� be provided:

a. The nature of the datatype's ·lexical space·, ·value space·, and ·lexical mapping·.

b. The nature of the equality relation; in particular, how to determine whether two values which are not identical are
equal.

Note: There is no requirement that equality be distinct from identity, but it ��� be.

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

159 of 171 03/07/2021, 05:45

c. The values of the ·fundamental facets·.

d. Which of the ·constraining facets· defined in this specification are applicable to the datatype (and ��� thus be used
in ·facet-based restriction· from it), and what they mean when applied to it.

e. If ·implementation-defined· ·constraining facets· are supported, which of those ·constraining facets· are applicable
to the datatype, and what they mean when applied to it.

f. What URI reference (more precisely, what anyURI value) is to be used to refer to the datatype, analogous to those
provided for the datatypes defined here in section Built-in Datatypes and Their Definitions (§3).

Note: It is convenient if the URI for a datatype and the expanded name of its simple type definition are related
by a simple mapping, like the URIs given for the ·built-in· datatypes in Built-in Datatypes and Their Definitions
(§3). However, this is not a requirement.

g. For each ·constraining facet· given a value for the new ·primitive·, what URI reference (more precisely, what anyURI
value) is to be used to refer to the usage of that facet on the datatype, analogous to those provided, for the ·built-in·
datatypes, in section Built-in Datatypes and Their Definitions (§3).

Note: As specified normatively elsewhere, the set of facets given values will at the very least include the
whiteSpace facet.

The ·value space· of the ·primitive· datatype ���� be disjoint from those of the other ·primitive· datatypes.

The ·lexical mapping· defined for an ·implementation-defined· primitive ���� be a total function from the ·lexical space·
onto the ·value space·. That is, (1) each ·literal· in the ·lexical space· ���� map to exactly one value, and (2) each value
���� be the image of at least one member of the ·lexical space·, and ��� be the image of more than one.

For consistency with the ·constraining facets· defined here, implementors who define new ·primitive· datatypes ������
allow the ·pattern· and ·enumeration· facets to apply.

The implementor ������ specify a ·canonical mapping· for the datatype if practicable.

4. It is ·implementation-defined· whether ·constraining facets· other than those defined in this specification are supported.

For each ·implementation-defined· facet, the following information ���� be provided:

a. What properties the facet has, viewed as a schema component.

Note: For most ·implementation-defined· facets, the structural pattern used for most ·constraining facets·
defined in this specification is expected to be satisfactory, but other structures ��� be specified.

b. Whether the facet is a ·pre-lexical·, ·lexical·, or ·value-based· facet.

c. Whether restriction of the facet takes the form of replacing a less restrictive facet value with a more restrictive value
(as in the ·minInclusive· and most other ·constraining facets· defined in this specification) or of adding new values
to a set of facet values (as for the ·pattern· facet). In the former case, the information provided ���� also specify
how to determine which of two given values is more restrictive (and thus can be used to restrict the other).

When an ·implementation-defined· facet is used in ·facet-based restriction·, the new value ���� be at least as
restrictive as the existing value, if any.

Note: The effect of the preceding paragraph is to ensure that a type derived by ·facet-based restriction· using
an ·implementation-defined· facet does not allow, or appear to allow, values not present in the ·base type·.

d. What ·primitive· datatypes the new ·constraining facet· applies to, and what it means when applied to them.

For a ·pre-lexical· facet, how to compute the result of applying the facet value to any given ·literal·.

For a ·pre-lexical· facet, the order in which it is applied to ·literals·, relative to other ·pre-lexical· facets.

For a ·lexical· facet, how to tell whether any given ·literal· is facet-valid with respect to it.

For a ·value-based· facet, how to tell whether any given value in the relevant ·primitive· datatypes is facet-valid with
respect to it.

Note: The host language ��� choose to specify that ·implementation-defined· ·constraining facets· are
applicable to ·built-in· ·primitive· datatypes; this information is necessary to make the ·implementation-defined·
facet usable in such host languages.

e. What URI reference (more precisely, what anyURI value) is to be used to refer to the facet, analogous to those
provided for the datatypes defined here in section Built-in Datatypes and Their Definitions (§3).

f. What element is to be used in XSD schema documents to apply the facet in the course of ·facet-based restriction·.

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

160 of 171 03/07/2021, 05:45

A schema document ���� be provided with an element declaration for each ·implementation-defined· facet; the
element declarations ������ specify xs:facet as their substitution-group head.

Note: The elements' expanded names are used by the condition-inclusion mechanism of [XSD 1.1 Part 1:
Structures] to allow schema authors to test whether a particular facet is supported and adjust the schema
document's contents accordingly.

·Implementation-defined· ·pre-lexical· facets ���� ���, when applied to ·literals· which have been whitespace-
normalized by the whiteSpace facet, produce ·literals· which are no longer whitespace-normalized.

5. It is ·implementation-defined· whether an implementation of this specification supports other versions of the Unicode
database [Unicode Database] in addition to the version cited normatively in the normative references (Normative (§K.1)).
If an implementation supports additional versions of the Unicode database, it is ·implementation-defined· which character
properties and which block name definitions are used in a given validity assessment.

It is ·implementation-defined· whether an implementation is capable, ·at user option·, of treating unrecognized block
names as errors in a schema.

It is ·implementation-defined· whether an implementation is capable, ·at user option·, of treating unrecognized category
escapes as denoting the empty set instead of the set of all characters.

Note: It follows from the above that each ·implementation-defined· ·primitive· datatype and each ·implementation-defined·
constraining facet has an expanded name. These expanded names are used by the condition-inclusion mechanism of
[XSD 1.1 Part 1: Structures] to allow schema authors to test whether a particular datatype or facet is supported and adjust
the schema document's contents accordingly.

H.2 Implementation-dependent features

The following features in this specification are ·implementation-dependent·. Software which claims to conform to this
specification (or to the specification of any host language which embeds XSD 1.1: Datatypes) ��� describe how these choices
have been exercised, in documentation which accompanies any conformance claim.

1. When multiple errors are encountered in type definitions or elsewhere, it is ·implementation-dependent· how many of the
errors are reported (as long as at least one error is reported), and which, what form the report of errors takes, and how
much detail is included.

I Changes since version 1.0

I.1 Datatypes and Facets

In order to align this specification with those being prepared by the XSL and XML Query Working Groups, a new datatype
named anyAtomicType has been introduced; it serves as the base type definition for all ·primitive· ·atomic· datatypes.

The treatment of datatypes has been made more precise and explicit; most of these changes affect the section on Datatype
System (§2). Definitions have been revised thoroughly and technical terms are used more consistently.

The (numeric) equality of values is now distinguished from the identity of the values themselves; this allows float and double to
treat positive and negative zero as distinct values, but nevertheless to treat them as equal for purposes of bounds checking.
This allows a better alignment with the expectations of users working with IEEE floating-point binary numbers.

The {value} of the bounded component for list datatypes is now always false, reflecting the fact that no ordering is prescribed
for ·list· datatypes, and so they cannot be bounded using the facets defined by this specification.

Units of length have been specified for all datatypes that are permitted the length constraining facet.

The use of the namespace http://www.w3.org/2001/XMLSchema-datatypes has been deprecated. The definition of a namespace
separate from the main namespace defined by this specification proved not to be necessary or helpful in facilitating the use, by
other specifications, of the datatypes defined here, and its use raises a number of difficult unsolved practical questions.

An assertions facet has been added, to allow schema authors to associated assertions with simple type definitions, analogous
to those allowed by [XSD 1.1 Part 1: Structures] for complex type definitions.

The discussion of whitespace handling in whiteSpace (§4.3.6) makes clearer that when the value is collapse, ·literals·
consisting solely of whitespace characters are reduced to the empty string; the earlier formulation has been misunderstood by
some implementors.

Conforming implementations ��� now support ·primitive· datatypes and facets in addition to those defined here.

I.2 Numerical Datatypes

As noted above, positive and negative zero, float and double are now treated as distinct but arithmetically equal values.

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

161 of 171 03/07/2021, 05:45

The description of the lexical spaces of unsignedLong, unsignedInt, unsignedShort, and unsignedByte has been revised to
agree with the schema for schemas by allowing for the possibility of a leading sign.

The float and double datatypes now follow IEEE 754 implementation practice more closely; in particular, negative and positive
zero are now distinct values, although arithmetically equal. Conversely, NaN is identical but not arithmetically equal to itself.

The character sequence '+INF' has been added to the lexical spaces of float and double.

I.3 Date/time Datatypes

The treatment of dateTime and related datatypes has been changed to provide a more explicit account of the value space in
terms of seven numeric properties. The most important substantive change is that values now explicitly retain information about
the time zone offset indicated in the lexical form; this allows better alignment with the treatment of such values in [XQuery 1.0
and XPath 2.0 Functions and Operators].

At the suggestion of the W3C OWL Working Group, a explicitTimezone facet has been added to allow date/time datatypes to
be restricted by requiring or forbidding an explicit time zone offset from UTC, instead of making it optional. The dateTimeStamp
datatype has been defined using this facet.

The treatment of the date/time datatype includes a carefully revised definition of order that ensures that for repeating datatypes
(time, gDay, etc.), timezoned values will be compared as though they are on the same "calendar day" ("local" property values)
so that in any given timezone, the days start at the local midnight and end just before local midnight. Days do not run from
00:00:00Z to 24:00:00Z in timezones other than Z.

The lexical representation '0000' for years is recognized and maps to the year 1 BCE; '-0001' maps to 2 BCE, etc. This is a
change from version 1.0 of this specification, in order to align with established practice (the so-called "astronomical year
numbering") and [ISO 8601].

Algorithms for arithmetic involving dateTime and duration values have been provided, and corrections made to the
·timeOnTimeline· function.

The treatment of leap seconds is no longer ·implementation-defined·: the date/time types described here do not include leap-
second values.

At the suggestion of the W3C Internationalization Core Working Group, most references to "time zone" have been replaced
with references to "time zone offset"; this resolves issue 4642 Terminology: zone offset versus time zone.

A number of syntactic and semantic errors in some of the regular expressions given to describe the lexical spaces of the
·primitive· datatypes (most notably the date/time datatypes) have been corrected.

The lexical mapping for times of the form '24:00:00' (with or without a trailing decimal point and zeroes) has been specified
explicitly.

I.4 Other changes

Support has been added for [XML] version 1.1 and [Namespaces in XML] version 1.1. The datatypes which depend on [XML]
and [Namespaces in XML] may now be used with the definitions provided by the 1.1 versions of those specifications, as well as
with the definitions in the 1.0 versions. It is ·implementation-defined· whether software conforming to this specification supports
the definitions given in version 1.0, or in version 1.1, of [XML] and [Namespaces in XML].

To reduce confusion and avert a widespread misunderstanding, the normative references to various W3C specifications now
state explicitly that while the reference describes the particular edition of a specification current at the time this specification is
published, conforming implementations of this specification are not required to ignore later editions of the other specification
but instead ��� support later editions, thus allowing users of this specification to benefit from corrections to other specifications
on which this one depends.

The reference to the Unicode Database [Unicode Database] has been updated from version 4.1.0 to version 5.1.0, at the
suggestion of the W3C Internationalization Core Working Group

References to various other specifications have also been updated.

The account of the value space of duration has been changed to specify that values consist only of two numbers (the number
of months and the number of seconds) rather than six (years, months, days, hours, minutes, seconds). This allows clearly
equivalent durations like P2Y and P24M to have the same value.

Two new totally ordered restrictions of duration have been defined: yearMonthDuration, defined in yearMonthDuration
(§3.4.26), and dayTimeDuration, defined in dayTimeDuration (§3.4.27). This allows better alignment with the treatment of
durations in [XQuery 1.0 and XPath 2.0 Functions and Operators].

The XML representations of the ·primitive· and ·ordinary· built-in datatypes have been moved out of the schema document for
schema documents in Schema for Schema Documents (Datatypes) (normative) (§A) and into a different appendix (Illustrative
XML representations for the built-in simple type definitions (§C)).

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

162 of 171 03/07/2021, 05:45

Numerous minor corrections have been made in response to comments on earlier working drafts.

The treatment of topics handled both in this specification and in [XSD 1.1 Part 1: Structures] has been revised to align the two
specifications more closely.

Several references to other specifications have been updated to refer to current versions of those specifications, including
[XML], [Namespaces in XML], [RFC 3986], [RFC 3987], and [RFC 3548].

Requirements for the datatype-validity of values of type language have been clarified.

Explicit definitions have been provided for the lexical and ·canonical mappings· of most of the primitive datatypes.

Schema Component Constraint enumeration facet value required for NOTATION (§3.3.19), which restricts the use of
NOTATION to validate ·literals· without first enumerating a set of values, has been clarified.

Some errors in the definition of regular-expression metacharacters have been corrected.

The descriptions of the pattern and enumeration facets have been revised to make clearer how values from different derivation
steps are combined.

A warning against using the whitespace facet for tokenizing natural-language data has been added on the request of the W3C
Internationalization Working Group.

In order to correct an error in version 1 of this specification and of [XSD 1.1 Part 1: Structures], ·unions· are no longer forbidden
to be members of other ·unions·. Descriptions of ·union· types have also been changed to reflect the fact that ·unions· can be
derived by restricting other ·unions·. The concepts of ·transitive membership· (the members of all members, recursively) and
·basic member· (those datatypes in the transitive membership which are not ·unions·) have been introduced and are used.

The requirements of conformance have been clarified in various ways. A distinction is now made between ·implementation-
defined· and ·implementation-dependent· features, and a list of such features is provided in Implementation-defined and
implementation-dependent features (normative) (§H). Requirements imposed on host languages which use or incorporate the
datatypes defined by this specification are defined.

The definitions of ����, ���� ���, and ·error· have been changed to specify that processors ���� detect and report errors in
schemas and schema documents (although the quality and level of detail in the error report is not constrained).

The lexical mapping of the QName datatype, in particular its dependence on the namespace bindings in scope at the place
where the ·literal· appears, has been clarified.

The characterization of ·lexical mappings· has been revised to say more clearly when they are functions and when they are
not, and when (in the ·special· datatypes) there are values in the ·value space· not mapped to by any members of the ·lexical
space·.

The nature of equality and identity of lists has been clarified.

Enumerations, identity constraints, and value constraints now treat both identical values and equal values as being the same
for purposes of validation. This affects primitive datatypes in which identity and equality are not the same. Positive and negative
zero, for example, are not treated as different for purposes of keys, keyrefs, or uniqueness constraints, and an enumeration
which includes either zero will accept either zero.

The mutual relations of lists and unions have been clarified, in particular the restrictions on what kinds of datatypes ��� appear
as the ·item type· of a list or among the ·member types· of a union.

Unions with no member types (and thus with empty ·value space· and ·lexical space·) are now explicitly allowed.

Cycles in the definitions of ·unions· and in the derivation of simple types are now explicitly forbidden.

A number of minor errors and obscurities have been fixed.

J Glossary (non-normative)

The listing below is for the benefit of readers of a printed version of this document: it collects together all the definitions which
appear in the document above.

Constraint on Schemas
Constraints on the schema components themselves, i.e. conditions components ���� satisfy to be components at all.
Largely to be found in Datatype components (§4).

Schema Representation Constraint
Constraints on the representation of schema components in XML. Some but not all of these are expressed in Schema for
Schema Documents (Datatypes) (normative) (§A) and DTD for Datatype Definitions (non-normative) (§B).

UTC
Universal Coordinated Time (UTC) is an adaptation of TAI which closely approximates UT1 by adding ·leap-seconds· to

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

163 of 171 03/07/2021, 05:45

selected ·UTC· days.
Validation Rule

Constraints expressed by schema components which information items ���� satisfy to be schema-valid. Largely to be
found in Datatype components (§4).

XDM representation
For any value V and any datatype T, the XDM representation of V under T is defined recursively as follows. Call the
XDM representation X. Then
1 If T = ·xs:anySimpleType· or ·xs:anyAtomicType· then X is V, and the dynamic type of X is xs:untypedAtomic.
2 If T . {variety} = atomic, then let T2 be the ·nearest built-in datatype· to T. If V is a member of the ·value space· of T2,

then X is V and the dynamic type of X is T2. Otherwise (i.e. if V is not a member of the ·value space· of T2), X is the
·XDM representation· of V under T2 . {base type definition}.

3 If T . {variety} = list, then X is a sequence of atomic values, each atomic value being the ·XDM representation· of the
corresponding item in the list V under T . {item type definition}.

4 If T . {variety} = union, then X is the ·XDM representation· of V under the ·active basic member· of V when validated
against T. If there is no ·active basic member·, then V has no ·XDM representation· under T.

absent
Throughout this specification, the value absent is used as a distinguished value to indicate that a given instance of a
property "has no value" or "is absent".

active basic member
If the ·active member type· is itself a ·union·, one of its members will be its ·active member type·, and so on, until finally a
·basic (non-union) member· is reached. That ·basic member· is the active basic member of the union.

active member type
In a valid instance of any ·union·, the first of its members in order which accepts the instance as valid is the active
member type.

ancestor
The ancestors of a type definition are its {base type definition} and the ·ancestors· of its {base type definition}.

anyAtomicType
anyAtomicType is a special ·restriction· of anySimpleType. The ·value· and ·lexical spaces· of anyAtomicType are the
unions of the ·value· and ·lexical spaces· of all the ·primitive· datatypes, and anyAtomicType is their ·base type·.

anySimpleType
The definition of anySimpleType is a special ·restriction· of anyType. The ·lexical space· of anySimpleType is the set
of all sequences of Unicode characters, and its ·value space· includes all ·atomic values· and all finite-length lists of zero
or more ·atomic values·.

atomic
Atomic datatypes are those whose ·value spaces· contain only ·atomic values·. Atomic datatypes are anyAtomicType
and all datatypes ·derived· from it.

atomic value
An atomic value is an elementary value, not constructed from simpler values by any user-accessible means defined by
this specification.

base type
Every datatype other than anySimpleType is associated with another datatype, its base type. Base types can be
·special·, ·primitive·, or ·ordinary·.

basic member
Those members of the ·transitive membership· of a ·union· datatype U which are themselves not ·union· datatypes are
the basic members of U.

built-in
Built-in datatypes are those which are defined in this specification; they can be ·special·, ·primitive·, or ·ordinary·
datatypes .

canonical mapping
The canonical mapping is a prescribed subset of the inverse of a ·lexical mapping· which is one-to-one and whose
domain (where possible) is the entire range of the ·lexical mapping· (the ·value space·).

canonical representation
The canonical representation of a value in the ·value space· of a datatype is the ·lexical representation· associated with
that value by the datatype's ·canonical mapping·

character class subtraction
A ·character group· that contains a subtraction operator is referred to as a character class subtraction.

character group part
A character group part (charGroupPart) is any of: a single unescaped character (SingleCharNoEsc), a single escaped
character (SingleCharEsc), a character class escape (charClassEsc), or a character range (charRange).

constraining facet
Constraining facets are schema components whose values may be set or changed during ·derivation· (subject to facet-
specific controls) to control various aspects of the derived datatype.

constructed
All ·ordinary· datatypes are defined in terms of, or constructed from, other datatypes, either by ·restricting· the ·value
space· or ·lexical space· of a ·base type· using zero or more ·constraining facets· or by specifying the new datatype as a
·list· of items of some ·item type·, or by defining it as a ·union· of some specified sequence of ·member types·.

datatype
In this specification, a datatype has three properties:

A ·value space·, which is a set of values.

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

164 of 171 03/07/2021, 05:45

A ·lexical space·, which is a set of ·literals· used to denote the values.

A small collection of functions, relations, and procedures associated with the datatype. Included are equality and
(for some datatypes) order relations on the ·value space·, and a ·lexical mapping·, which is a mapping from the
·lexical space· into the ·value space·.

derived
A datatype T is immediately derived from another datatype X if and only if X is the ·base type· of T.

derived
A datatype R is derived from another datatype B if and only if one of the following is true:

B is the ·base type· of R.

There is some datatype X such that X is the ·base type· of R, and X is derived from B.

div
If m and n are numbers, then m div n is the greatest integer less than or equal to m / n .

error
A failure of a schema or schema document to conform to the rules of this specification.
Except as otherwise specified, processors ���� distinguish error-free (conforming) schemas and schema documents
from those with errors; if a schema used in type-validation or a schema document used in constructing a schema is in
error, processors ���� report the fact; if more than one is in error, it is ·implementation-dependent· whether more than
one is reported as being in error. If more than one of the constraints given in this specification is violated, it is
·implementation-dependent· how many of the violations, and which, are reported.

Note: Failure of an XML element or attribute to be datatype-valid against a particular datatype in a particular schema
is not in itself a failure to conform to this specification and thus, for purposes of this specification, not an error.

facet-based restriction
A datatype is defined by facet-based restriction of another datatype (its ·base type·), when values for zero or more
·constraining facets· are specified that serve to constrain its ·value space· and/or its ·lexical space· to a subset of those
of the ·base type·.

for compatibility
A feature of this specification included solely to ensure that schemas which use this feature remain compatible with
[XML].

fundamental facet
Each fundamental facet is a schema component that provides a limited piece of information about some aspect of each
datatype.

implementation-defined
Something which ��� vary among conforming implementations, but which ���� be specified by the implementor for each
particular implementation, is implementation-defined.

implementation-dependent
Something which ��� vary among conforming implementations, is not specified by this or any W3C specification, and is
not required to be specified by the implementor for any particular implementation, is implementation-dependent.

incomparable
Two values that are neither equal, less-than, nor greater-than are incomparable. Two values that are not ·incomparable·
are comparable.

intervening union
If a datatype M is in the ·transitive membership· of a ·union· datatype U, but not one of U's ·member types·, then a
sequence of one or more ·union· datatypes necessarily exists, such that the first is one of the ·member types· of U, each
is one of the ·member types· of its predecessor in the sequence, and M is one of the ·member types· of the last in the
sequence. The ·union· datatypes in this sequence are said to intervene between M and U. When U and M are given by
the context, the datatypes in the sequence are referred to as the intervening unions. When M is one of the ·member
types· of U, the set of intervening unions is the empty set.

item type
The ·atomic· or ·union· datatype that participates in the definition of a ·list· datatype is the item type of that ·list·
datatype.

leap-second
A leap-second is an additional second added to the last day of December, June, October, or March, when such an
adjustment is deemed necessary by the International Earth Rotation and Reference Systems Service in order to keep
·UTC· within 0.9 seconds of observed astronomical time. When leap seconds are introduced, the last minute in the day
has more than sixty seconds. In theory leap seconds can also be removed from a day, but this has not yet occurred.
(See [International Earth Rotation Service (IERS)], [ITU-R TF.460-6].) Leap seconds are not supported by the types
defined here.

lexical
A constraining facet which directly restricts the ·lexical space· of a datatype is a lexical facet.

lexical mapping
The lexical mapping for a datatype is a prescribed relation which maps from the ·lexical space· of the datatype into its
·value space·.

lexical representation
The members of the ·lexical space· are lexical representations of the values to which they are mapped.

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

165 of 171 03/07/2021, 05:45

lexical space
The lexical space of a datatype is the prescribed set of strings which ·the lexical mapping· for that datatype maps to
values of that datatype.

list
List datatypes are those having values each of which consists of a finite-length (possibly empty) sequence of ·atomic
values·. The values in a list are drawn from some ·atomic· datatype (or from a ·union· of ·atomic· datatypes), which is the
·item type· of the list.

literal
A sequence of zero or more characters in the Universal Character Set (UCS) which may or may not prove upon
inspection to be a member of the ·lexical space· of a given datatype and thus a ·lexical representation· of a given value in
that datatype's ·value space·, is referred to as a literal.

match
(Of strings or names:) Two strings or names being compared must be identical. Characters with multiple possible
representations in ISO/IEC 10646 (e.g. characters with both precomposed and base+diacritic forms) match only if they
have the same representation in both strings. No case folding is performed.
(Of strings and rules in the grammar:) A string matches a grammatical production if and only if it belongs to the language
generated by that production.

may
Schemas, schema documents, and processors are permitted to but need not behave as described.

member types
The datatypes that participate in the definition of a ·union· datatype are known as the member types of that ·union·
datatype.

minimally conforming
Implementations claiming minimal conformance to this specification independent of any host language ���� do all of
the following:
1 Support all the ·built-in· datatypes defined in this specification.
2 Completely and correctly implement all of the ·constraints on schemas· defined in this specification.
3 Completely and correctly implement all of the ·Validation Rules· defined in this specification, when checking the

datatype validity of literals against datatypes.
mod

If m and n are numbers, then m mod n is m − n × (m ·div· n) .
must

(Of schemas and schema documents:) Schemas and documents are required to behave as described; otherwise they are
in ·error·.
(Of processors:) Processors are required to behave as described.

must not
Schemas, schema documents and processors are forbidden to behave as described; schemas and documents which
nevertheless do so are in ·error·.

nearest built-in datatype
For any datatype T, the nearest built-in datatype to T is the first ·built-in· datatype encountered in following the chain of
links connecting each datatype to its ·base type·. If T is a ·built-in· datatype, then the nearest built-in datatype of T is T
itself; otherwise, it is the nearest built-in datatype of T's ·base type·.

normalized block name
For any Unicode block, the normalized block name of that block is the string of characters formed by stripping out white
space and underbar characters from the block name as given in [Unicode Database], while retaining hyphens and
preserving case distinctions.

optional
An optional property is permitted but not required to have the distinguished value absent.

ordered
A ·value space·, and hence a datatype, is said to be ordered if some members of the ·value space· are drawn from a
·primitive· datatype for which the table in Fundamental Facets (§F.1) specifies the value total or partial for the ordered
facet.

ordinary
Ordinary datatypes are all datatypes other than the ·special· and ·primitive· datatypes.

owner
A component may be referred to as the owner of its properties, and of the values of those properties.

pre-lexical
A constraining facet which is used to normalize an initial ·literal· before checking to see whether the resulting character
sequence is a member of a datatype's ·lexical space· is a pre-lexical facet.

primitive
Primitive datatypes are those datatypes that are not ·special· and are not defined in terms of other datatypes; they exist
ab initio.

regular expression
A regular expression is composed from zero or more ·branches·, separated by '|' characters.

restriction
A datatype R is a restriction of another datatype B when

should
It is recommended that schemas, schema documents, and processors behave as described, but there can be valid
reasons for them not to; it is important that the full implications be understood and carefully weighed before adopting
behavior at variance with the recommendation.

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

166 of 171 03/07/2021, 05:45

special
The special datatypes are anySimpleType and anyAtomicType.

special value
A special value is an object whose only relevant properties for purposes of this specification are that it is distinct from,
and unequal to, any other values (special or otherwise).

transitive membership
The transitive membership of a ·union· is the set of its own ·member types·, and the ·member types· of its members,
and so on. More formally, if U is a ·union·, then (a) its ·member types· are in the transitive membership of U, and (b) for
any datatypes T1 and T2, if T1 is in the transitive membership of U and T2 is one of the ·member types· of T1, then T2 is
also in the transitive membership of U.

union
Union datatypes are (a) those whose ·value spaces·, ·lexical spaces·, and ·lexical mappings· are the union of the ·value
spaces·, ·lexical spaces·, and ·lexical mappings· of one or more other datatypes, which are the ·member types· of the
union, or (b) those derived by ·facet-based restriction· of another union datatype.

unknown
A datatype which is not available for use is said to be unknown.

unknown
An ·constraining facet· which is not supported by the processor in use is unknown.

user option
A choice left under the control of the user of a processor, rather than being fixed for all users or uses of the processor.
Statements in this specification that "Processors ��� at user option" behave in a certain way mean that processors ���
provide mechanisms to allow users (i.e. invokers of the processor) to enable or disable the behavior indicated.
Processors which do not provide such user-operable controls ���� ��� behave in the way indicated. Processors which
do provide such user-operable controls ���� make it possible for the user to disable the optional behavior.

Note: The normal expectation is that the default setting for such options will be to disable the optional behavior in
question, enabling it only when the user explicitly requests it. This is not, however, a requirement of conformance: if
the processor's documentation makes clear that the user can disable the optional behavior, then invoking the
processor without requesting that it be disabled can be taken as equivalent to a request that it be enabled. It is
required, however, that it in fact be possible for the user to disable the optional behavior.

Note: Nothing in this specification constrains the manner in which processors allow users to control user options.
Command-line options, menu choices in a graphical user interface, environment variables, alternative call patterns in
an application programming interface, and other mechanisms may all be taken as providing user options.

user-defined
User-defined datatypes are those datatypes that are defined by individual schema designers.

value space
The value space of a datatype is the set of values for that datatype.

value-based
A constraining facet which directly restricts the ·value space· of a datatype is a value-based facet.

wildcard character
The wildcard character is a metacharacter which matches almost any single character:

K References

K.1 Normative

IEEE 754-2008
IEEE. IEEE Standard for Floating-Point Arithmetic. 29 August 2008. http://ieeexplore.ieee.org/servlet
/opac?punumber=4610933

Namespaces in XML
World Wide Web Consortium. Namespaces in XML 1.1 (Second Edition), ed. Tim Bray et al. W3C Recommendation 16
August 2006. Available at: http://www.w3.org/TR/xml-names11/ The edition cited is the one current at the date of
publication of this specification. Implementations ��� follow the edition cited and/or any later edition(s); it is
implementation-defined which. For details of the dependency of this specification on Namespaces in XML 1.1, see
Dependencies on Other Specifications (§1.3).

Namespaces in XML 1.0
World Wide Web Consortium. Namespaces in XML 1.0 (Third Edition), ed. Tim Bray et al. W3C Recommendation 8
December 2009. Available at: http://www.w3.org/TR/xml-names/ The edition cited is the one current at the date of
publication of this specification. Implementations ��� follow the edition cited and/or any later edition(s); it is
implementation-defined which. For details of the dependency of this specification on Namespaces in XML 1.0, see
Dependencies on Other Specifications (§1.3).

RFC 3548
S. Josefsson, ed. RFC 3548: The Base16, Base32, and Base64 Data Encodings. July 2003. Available at:
http://www.ietf.org/rfc/rfc3548.txt

Unicode Database
The Unicode Consortium. Unicode Character Database. Revision 3.1.0, ed. Mark Davis and Ken Whistler. 2001-02-28.
Available at: http://www.unicode.org/Public/3.1-Update/UnicodeCharacterDatabase-3.1.0.html. For later versions, see
http://www.unicode.org/versions/. The edition cited is the one current at the date of publication of XSD 1.0.

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

167 of 171 03/07/2021, 05:45

Implementations ��� follow the edition cited and/or any later edition(s); it is implementation-defined which.
XDM

World Wide Web Consortium. XQuery 1.0 and XPath 2.0 Data Model (XDM) (Second Edition), ed. Mary Fernández et al.
W3C Recommendation 14 December 2010. Available at: http://www.w3.org/TR/xpath-datamodel/.

XML
World Wide Web Consortium. Extensible Markup Language (XML) 1.1 (Second Edition), ed. Tim Bray et al. W3C
Recommendation 16 August 2006, edited in place 29 September 2006. Available at http://www.w3.org/TR/xml11/ The
edition cited is the one current at the date of publication of this specification. Implementations ��� follow the edition cited
and/or any later edition(s); it is implementation-defined which. For details of the dependency of this specification on XML
1.1, see Dependencies on Other Specifications (§1.3).

XML 1.0
World Wide Web Consortium. Extensible Markup Language (XML) 1.0 (Fifth Edition), ed. Tim Bray et al. W3C
Recommendation 26 November 2008. Available at http://www.w3.org/TR/xml/. The edition cited is the one current at the
date of publication of this specification. Implementations ��� follow the edition cited and/or any later edition(s); it is
implementation-defined which. For details of the dependency of this specification on XML, see Dependencies on Other
Specifications (§1.3).

XPath 2.0
World Wide Web Consortium. XML Path Language (XPath) 2.0 (Second Edition), ed. Anders Berglund et al. W3C
Recommendation 14 December 2010 (Link errors corrected 3 January 2011). Available at: http://www.w3.org
/TR/xpath20/.

XQuery 1.0 and XPath 2.0 Functions and Operators
World Wide Web Consortium. XQuery 1.0 and XPath 2.0 Functions and Operators (Second Edition), ed. Ashok Malhotra
et al. W3C Recommendation 14 December 2010. Available at: http://www.w3.org/TR/xpath-functions/.

XSD 1.1 Part 1: Structures
World Wide Web Consortium. W3C XML Schema Definition Language (XSD) 1.1 Part 1: Structures, ed. Shudi (Sandy)
Gao 高殊镝, C. M. Sperberg-McQueen, and Henry S. Thompson. W3C Recommendation 5 April 2012. Available at:
http://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/structures.html The edition cited is the one current at the
date of publication of this specification. Implementations ��� follow the edition cited and/or any later edition(s); it is
implementation-defined which.

K.2 Non-normative

BCP 47
Internet Engineering Task Force (IETF). Best Current Practices 47. 2006. Available at: http://tools.ietf.org/rfc/bcp/bcp47.
Concatenation of RFC 4646: Tags for Identifying Languages, ed. A. Phillips and M. Davis, September 2006,
http://www.ietf.org/rfc/bcp/bcp47.txt, and RFC 4647: Matching of Language Tags, ed. A Phillips and M. Davis, September
2006, http://www.rfc-editor.org/rfc/bcp/bcp47.txt.

Clinger, WD (1990)
William D Clinger. How to Read Floating Point Numbers Accurately. In Proceedings of Conference on Programming
Language Design and Implementation, pages 92-101. Available at: ftp://ftp.ccs.neu.edu/pub/people/will/howtoread.ps

HTML 4.01
World Wide Web Consortium. HTML 4.01 Specification, ed. Dave Raggett, Arnaud Le Hors, and Ian Jacobs. W3C
Recommendation 24 December 1999. Available at: http://www.w3.org/TR/html401/

ISO 11404
ISO (International Organization for Standardization). Language-independent Datatypes. ISO/IEC 11404:2007. See
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39479

ISO 8601
ISO (International Organization for Standardization). Representations of dates and times, 1988-06-15.

ISO 8601:2000 Second Edition
ISO (International Organization for Standardization). Representations of dates and times, second edition, 2000-12-15.

ITU-R TF.460-6
International Telecommunication Union (ITU). Recommendation ITU-R TF.460-6: Standard-frequency and time-signal
emissions. [Geneva: ITU, February 2002.]

International Earth Rotation Service (IERS)
International Earth Rotation Service (IERS). See http://maia.usno.navy.mil

LEIRI
Legacy extended IRIs for XML resource identification, ed. Henry S. Thompson, Richard Tobin, and Norman Walsh. W3C
Working Group Note 3 November 2008 (BNF comment style corrected in place 2009-07-09). See http://www.w3.org
/TR/leiri/

Perl
The Perl Programming Language. See http://www.perl.org/get.html

Precision Decimal
World Wide Web Consortium. An XSD datatype for IEEE floating-point decimal, ed. David Peterson and C. M. Sperberg-
McQueen. W3C Working Group Note 9 June 2011. Available at http://www.w3.org/TR/xsd-precisionDecimal/

RDF Schema
World Wide Web Consortium. RDF Vocabulary Description Language 1.0: RDF Schema, ed. Dan Brickley and R. V.
Guha. W3C Recommendation 10 February 2004. Available at: http://www.w3.org/TR/rdf-schema/

RFC 2045
N. Freed and N. Borenstein. RFC 2045: Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet
Message Bodies. 1996. Available at: http://www.ietf.org/rfc/rfc2045.txt

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

168 of 171 03/07/2021, 05:45

RFC 3066
H. Alvestrand, ed. RFC 3066: Tags for the Identification of Languages 1995. Available at: http://www.ietf.org
/rfc/rfc3066.txt

RFC 3986
T. Berners-Lee, R. Fielding, and L. Masinter, RFC 3986: Uniform Resource Identifier (URI): Generic Syntax. January
2005. Available at: http://www.ietf.org/rfc/rfc3986.txt

RFC 3987
M. Duerst and M. Suignard. RFC 3987: Internationalized Resource Identifiers (IRIs) . January 2005. Available at:
http://www.ietf.org/rfc/rfc3987.txt

RFC 4646
A. Phillips and M. Davis, ed. RFC 4646: Tags for Identifying Languages 2006. Available at: http://www.ietf.org
/rfc/rfc4646.txt

RFC 4647
A. Phillips and M. Davis, ed. RFC 4647: Matching of Language Tags 2006. Available at: http://www.ietf.org/rfc/rfc4647.txt

Ruby
World Wide Web Consortium. Ruby Annotation, ed. Marcin Sawicki et al. W3C Recommendation 31 May 2001 (Markup
errors corrected 25 June 2008). Available at: http://www.w3.org/TR/ruby/

SQL
ISO (International Organization for Standardization). ISO/IEC 9075-2:1999, Information technology --- Database
languages --- SQL --- Part 2: Foundation (SQL/Foundation). [Geneva]: International Organization for Standardization,
1999. See http://www.iso.org/iso/home.htm

Timezones
World Wide Web Consortium. Working with Time Zones, ed. Addison Phillips et al. W3C Working Group Note 5 July
2011. Available at http://www.w3.org/TR/timezone/

U.S. Naval Observatory Time Service Department
Information about Leap Seconds Available at: http://tycho.usno.navy.mil/leapsec.html

USNO Historical List
U.S. Naval Observatory Time Service Department, Historical list of leap seconds Available at: ftp://maia.usno.navy.mil
/ser7/tai-utc.dat

Unicode Regular Expression Guidelines
Mark Davis. Unicode Regular Expression Guidelines, 1988. Available at: http://www.unicode.org/unicode/reports/tr18/

Unicode block names
World Wide Web Consortium. Unicode block names for use in XSD regular expressions, ed. C. M. Sperberg-McQueen.
W3C Working Group Note 9 June 2011. Available at: http://www.w3.org/TR/xsd-unicode-blocknames/

XML Schema Language: Part 0 Primer
World Wide Web Consortium. XML Schema Language: Part 0 Primer Second Edition, ed. David C. Fallside and Priscilla
Walmsley. W3C Recommendation 28 October 2004. Available at: http://www.w3.org/TR/xmlschema-0/

XML Schema Requirements
XML Schema Requirements , ed. Ashok Malhotra and Murray Maloney. W3C Note 15 February 1999. Available at:
http://www.w3.org/TR/NOTE-xml-schema-req

XSL
World Wide Web Consortium. Extensible Stylesheet Language (XSL), ed. Anders Berglund. W3C Recommendation 05
December 2006. Available at: http://www.w3.org/TR/xsl11/

L Acknowledgements (non-normative)

Along with the editors thereof, the following contributed material to the first version of this specification:

Asir S. Vedamuthu, webMethods, Inc
Mark Davis, IBM

Co-editor Ashok Malhotra's work on this specification from March 1999 until February 2001 was supported by IBM, and from
then until May 2004 by Microsoft. Since July 2004 his work on this specification has been supported by Oracle Corporation.

The work of Dave Peterson as a co-editor of this specification was supported by IDEAlliance (formerly GCA) through March
2004, and beginning in April 2004 by SGMLWorks!.

The work of C. M. Sperberg-McQueen as a co-editor of this specification was supported by the World Wide Web Consortium
through January 2009 and again from June 2010 through May 2011, and beginning in February 2009 by Black Mesa
Technologies LLC.

The XML Schema Working Group acknowledges with thanks the members of other W3C Working Groups and industry experts
in other forums who have contributed directly or indirectly to the creation of this document and its predecessor.

At the time this document is published, the members in good standing of the XML Schema Working Group are:

David Ezell, National Association of Convenience Stores (NACS) (chair)
Shudi (Sandy) Gao 高殊镝, IBM
Mary Holstege, Mark Logic
Sam Idicula, Oracle Corporation
Michael Kay, Invited expert

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

169 of 171 03/07/2021, 05:45

Jim Melton, Oracle Corporation
Dave Peterson, Invited expert
Liam Quin, W3C (staff contact)
C. M. Sperberg-McQueen, invited expert
Henry S. Thompson, University of Edinburgh
Kongyi Zhou, Oracle Corporation

The XML Schema Working Group has benefited in its work from the participation and contributions of a number of people who
are no longer members of the Working Group in good standing at the time of publication of this Working Draft. Their names are
given below. In particular we note with sadness the accidental death of Mario Jeckle shortly before publication of the first
Working Draft of XML Schema 1.1. Affiliations given are (among) those current at the time of the individuals' work with the WG.

Paula Angerstein, Vignette Corporation
Leonid Arbouzov, Sun Microsystems
Jim Barnette, Defense Information Systems Agency (DISA)
David Beech, Oracle Corp.
Gabe Beged-Dov, Rogue Wave Software
Laila Benhlima, Ecole Mohammadia d'Ingenieurs Rabat (EMI)
Doris Bernardini, Defense Information Systems Agency (DISA)
Paul V. Biron, HL7; later Invited expert
Don Box, DevelopMentor
Allen Brown, Microsoft
Lee Buck, TIBCO Extensibility
Greg Bumgardner, Rogue Wave Software
Dean Burson, Lotus Development Corporation
Charles E. Campbell, Invited expert
Oriol Carbo, University of Edinburgh
Wayne Carr, Intel
Peter Chen, Bootstrap Alliance and LSU
Tyng-Ruey Chuang, Academia Sinica
Tony Cincotta, NIST
David Cleary, Progress Software
Mike Cokus, MITRE
Dan Connolly, W3C (staff contact)
Ugo Corda, Xerox
Roger L. Costello, MITRE
Joey Coyle, Health Level Seven
Haavard Danielson, Progress Software
Josef Dietl, Mozquito Technologies
Kenneth Dolson, Defense Information Systems Agency (DISA)
Andrew Eisenberg, Progress Software
Rob Ellman, Calico Commerce
Tim Ewald, Developmentor
Alexander Falk, Altova GmbH
David Fallside, IBM
George Feinberg, Object Design
Dan Fox, Defense Logistics Information Service (DLIS)
Charles Frankston, Microsoft
Matthew Fuchs, Commerce One
Andrew Goodchild, Distributed Systems Technology Centre (DSTC Pty Ltd)
Xan Gregg, TIBCO Extensibility
Paul Grosso, Arbortext, Inc
Martin Gudgin, DevelopMentor
Ernesto Guerrieri, Inso
Dave Hollander, Hewlett-Packard Company (co-chair)
Nelson Hung, Corel
Jane Hunter, Distributed Systems Technology Centre (DSTC Pty Ltd)
Michael Hyman, Microsoft
Renato Iannella, Distributed Systems Technology Centre (DSTC Pty Ltd)
Mario Jeckle, DaimlerChrysler
Rick Jelliffe, Academia Sinica
Marcel Jemio, Data Interchange Standards Association
Simon Johnston, Rational Software
Kohsuke Kawaguchi, Sun Microsystems
Dianne Kennedy, Graphic Communications Association
Janet Koenig, Sun Microsystems
Setrag Khoshafian, Technology Deployment International (TDI)
Melanie Kudela, Uniform Code Council
Ara Kullukian, Technology Deployment International (TDI)
Andrew Layman, Microsoft

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

170 of 171 03/07/2021, 05:45

Dmitry Lenkov, Hewlett-Packard Company
Bob Lojek, Mozquito Technologies
John McCarthy, Lawrence Berkeley National Laboratory
Matthew MacKenzie, XML Global
Nan Ma, China Electronics Standardization Institute
Eve Maler, Sun Microsystems
Ashok Malhotra, IBM, Microsoft, Oracle
Murray Maloney, Muzmo Communication, acting for Commerce One
Paolo Marinelli, University of Bologna
Lisa Martin, IBM
Noah Mendelsohn, Lotus; IBM; invited expert
Adrian Michel, Commerce One
Alex Milowski, Invited expert
Don Mullen, TIBCO Extensibility
Murata Makoto, Xerox
Ravi Murthy, Oracle
Chris Olds, Wall Data
Frank Olken, Lawrence Berkeley National Laboratory
David Orchard, BEA Systems, Inc.
Paul Pedersen, Mark Logic Corporation
Shriram Revankar, Xerox
Mark Reinhold, Sun Microsystems
Jonathan Robie, Software AG
Cliff Schmidt, Microsoft
John C. Schneider, MITRE
Eric Sedlar, Oracle Corp.
Lew Shannon, NCR
Anli Shundi, TIBCO Extensibility
William Shea, Merrill Lynch
Jerry L. Smith, Defense Information Systems Agency (DISA)
John Stanton, Defense Information Systems Agency (DISA)
Tony Stewart, Rivcom
Bob Streich, Calico Commerce
William K. Stumbo, Xerox
Hoylen Sue, Distributed Systems Technology Centre (DSTC Pty Ltd)
Ralph Swick, W3C
John Tebbutt, NIST
Ross Thompson, Contivo
Matt Timmermans, Microstar
Jim Trezzo, Oracle Corp.
Steph Tryphonas, Microstar
Scott Tsao, The Boeing Company
Mark Tucker, Health Level Seven
Asir S. Vedamuthu, webMethods, Inc
Fabio Vitali, University of Bologna
Scott Vorthmann, TIBCO Extensibility
Priscilla Walmsley, XMLSolutions
Norm Walsh, Sun Microsystems
Cherry Washington, Defense Information Systems Agency (DISA)
Aki Yoshida, SAP AG
Stefano Zacchiroli, University of Bologna
Mohamed Zergaoui, Innovimax

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/datatypes...

171 of 171 03/07/2021, 05:45

